Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Эмбриональные источники и развитие, строение зубов



При выполнении основной функции переднего отдела пищеварительной трубки – механической переработке пищи, ведущее место отводится зубам. От нормальной закладки и развития, нормального состояния зубов в значительной степени зависит эффективность дальнейшей переработки и всасывания пищи.
В течении жизни развивается 2 смены зубов. Первая смена зубов называется выпадающими или молочными и служит в детстве. Всего выпадающих зубов 20 – по 10 в верхней и нижней челюсти. Выпадающие зубы функционируют в полном составе до 6 лет. С 6 лет до 12 лет выпадающие зубы постепенно сменяются на постоянные зубы. Набор постоянных зубов состоит из 32 зубов. Формула зубов такова: 1-2 – резцы, 3 – клык, 4-5 – премоляры, 6-7-8 – моляры.
Зубы закладываются из 2 источников:
1. Эпителий ротовой полости – эмаль зуба.
2. Мезенхима – все остальные ткани зуба (дентин, цемент, пульпа, периодонт и параодонт).
На 6-й недели эмбриогенеза многослойный плоский неороговевающий эпителий на верхней и нижней челюстях утолщается в виде подковообразного тяжа – зубная пластинка. Эта зубная пластинка в дальнейшем погружается в подлежащую мезенхиму. На передней (губной) поверхности зубной пластинки появляются эпителиальные выпячивания – так называемые зубные почки. С стороны нижней поверхности в зубную почку начинает вдавливаться уплотненная мезенхима в виде зубного сосочка. В результате этого эпителиальная зубная почка превращается в перевернутый 2-х стенный бокал или чащу, который называется эпителиальным эмалевым органом. Эмалевый орган и зубной сосочек вместе окружаются уплотненной мезенхимой – зубным мешочком.
Эпителиальный эмалевый орган вначале соединен тонким стебельком с зубной пластинкой. Клетки эпителиального эмалевого органа дифференцируются в 3-х направлениях:
1. Внутренние клетки (на границе с зубным сосочком) – превращаются в эмальобразующие клетки – амелобласты.
2. Промежуточные клетки – становятся отросчатыми, образуют петлистую сеть – пульпу эмалевого органа. Эти клетки участвуют в питании амелобластов, играют определенную роль при прорезывании зубов, в последующем уплощаются и образуют кутикулу.
3. Наружные клетки – уплощаются, после прорезывания дегенерируют.
В функциональном отношении самые важные клетки эмалевого органа – внутренние клетки. Эти клетки становятся высокопризматическими, дифференцируются в амелобласты. При дифференцировке в амелобластах становятся хорошо выраженными гранулярный ЭПС, пластинчатый комплекс и митохондрии. Причем в амелобластах происходит инверсия ядра и органоидов (замена местами); соответственно происходит инверсия апикальных и базальных полюсов клетки. На апикальном конце амелобластов имеется дистальный отросток Томса, там содержится подготовленный для выделения секрет – органическая основа эмали (матрикс эмали). На срезах матрикс эмали состоит из мельчайших тубулярных субьединиц с овальным сечением диаметром около 25 нм. Химически матрикс эмали состоит из белков и углеводов. Процесс обизествления эмали связан с тубулярными субьединицами – в каждой трубочке образуется по 1 кристаллу фосфата кальция, так формируются эмалевые призмы. Эмалевые призмы склеиваются органической склеивающей массой и оплетаются тончайшими фибриллами. После формирования эмали амелобласты дегенерируют.
Параллельно с образованием эмали верхний слой клеток зубного сосочка дифференцируются в одонтобласты и начинают формировать дентин. Под электронным микроскопом одонтобласты сильно удлиненные клетки с хорошо выраженным гранулярным ЭПС, пластинчатым комплексом и митохондриями. На апикальном конце имеют дистальный отросток. Одонтобласты вырабатывают органическую часть межклеточного вещества дентина (коллагеновые волокна и органические вещества основного вещества). Далее на органическую основу дентина осаждаются соли кальция, т.е. дентин обизвествляется. В отличии от амелобластов дентинобласты после формирования дентина не дегенерируют.
Параллельно развитию дентина из мезенхимы зубного сосочка начинается дифференцировка и формирование пульпы: мезенхимные клетки превращаются в фибробласты и начинают выработку коллагеновых волокон и основного вещества пульпы.
Разрастание дентина и пульпы в области корня зуба обуславливает прорезывание зуба, так как зачаток зуба в области корня окружен формирующейся костной альвеолой, поэтому дентин и пульпа не могут разрастаться в этом направлении, в области корня поднимается тканевое давление и зуб вынужден выталкиваться, подниматься к поверхности эпителия ротовой полости, т.е. прорезываться.
Из внутренних слоев зубного мешочка в области корня образуется цемент зуба, а из наружных слоев зубного мешочка образуется зубная связка – периодонт.
На 5-ом месяце эмбрионального развития из оставшейся части зубной пластинки закладываются зачатки постоянных зубов. Развитие постоянных зубов происходит также как и молочных зубов. Вначале молочные и постоянные зубы располагаются в одной костной альвеоле, позже между ними формируется костная перегородка. В возраст 6-12 лет зачаток постоянного зуба начинает расти и давит на костную перегородку, отделяющую его от молочного зуба; одновременно активируются остеокласты и разрушают костную перегородку и корень молочного зуба. В результате растущий постоянный зуб выталкивает оставшуюся коронку молочного зуба и прорезывается.
Теории прорезывания зубов.
1. Корневая теория Хантера – растущие корни зуба упираются в твердое костное дно костной альвеолы и зуб выталкивается из костной альвеолы.
2. Теория Ясвоина – зуб сравнивает с ракетой.
3. Теория Катца – растущий зуб давит на боковые стенки альвеол, что приводит к поверхностной резорбции кости; одновременно с этим на наружной поверхности альвеолярных отростков и на его верхнем крае происходит отложение новой кости. Костная ткань откладывается в области дна альвеолы, что приводит к повышению там тканевого давления, выталкивающее зуб к поверхности.
Гистологическое строение зуба.

В зубе различают коронку, шейку и корень. Есть понятие анатомическая коронка и клиническая коронка. Анатомическая коронка – часть зуба, выступающая над деснами в ротовую полость и покрытая эмалью. Клиническая коронка – часть зуба, выступающая в ротовую полость и не покрытой десной. Анатомическая и клиническая коронка в детстве и молодом возрасте соответствуют друг другу, однако по мере старения десна отодвигается книзу и прикрепляется в области цемента корня зуба. Поэтому клиническая коронка становится длиньше анатомической. Корень зуба – часть зуба покрытая цементом. Граница между эмалевым и цементным покрытием соответствует шейке зуба.
Внутри каждого зуба имеется пульпарная полость. Часть пульпарной полости в области коронки называется пульпарной камерой, а часть в области корня – пульпарный или корневой канал. Вход в пульпарную полость находится на верхушке корня и называется апикальным отверстием.
Совокупность коллагеновых волокон, одним концом впаянные в костную ткань альвеолы, другим – в цемент, прочно удерживает зуб в костных альвеолах и называется периодонтом. Периодонт и связанные с ним прилегающие ткани ( костная ткань зубной альвеолы, слизистая оболочка десны) вместе называются парадонтом. Парадонт, зуб и прилегающая к зубу десна вместе называются зубным органом.
Эмаль зуба – самая твердая ткань в человеческом организме, покрывает только коронку зуба. Эмаль состоит на 96-97% из неорганических веществ (фосфаты, карбонаты и фториды кальция), 3-4% составляет органические вещества (тоньчайшие фибриллы и склеивающая масса). Неорганические вещества образуют эмалевые призмы. Эмалевая призма – эсобразно изогнутая, многогранная призма из кристаллов солей кальция. Друг с другом эмалевые призмы связаны сетью тонких фибрилл и склеены склеивающим веществом. После прорезывания образованная из остатков погибших уплощенных наружных клеток эмалевого органа тонкая пленка – кутикула на жевательных поверхностях стирается. Зрелая эмаль инертна, не содержит клеток и поэтому неспособна к регенерации при повреждениях. Однако имеет место минимальный обмен ионами между эмалью и слюной, благодаря чему на поверхности эмали может происходить минимальное дополнительное обызвествление в виде пленки – пелликула. При недостаточно хорошем гигиеническом уходе за зубами на поверхности эмали образуется зубной налет – скопление микроорганизмов, продукты жизнедеятельности которых изменяет местную РН в кислую сторону, что в свою очередь обуславливает вымывание солей кольция, т.е. может стать началом кариеса. При отложении солей в очагах зубного налета образуются зубные камни.
Эмалевые пучки – это прослойка между эмалевыми призмами из необызвествленных органических веществ; имеются вблизи эмалево-дентиновой границе. Эмалевые пластинки – такие же прослойки, пронизывающие всю толщу эмали; их больше всего в области шейки зуба. Эмалевые пучки и пластинки могут стать входными воротами для микроорганизмов и начальными точками кариозных процессов.
Эмалевые веретена – колбообразное утолщение отростков одонтобластов достигших до эмале-дентиновой границы и проникших в эмаль. Чаще встречаются в области жевательных бугорков моляров и премоляров.
Дентин покрывает и коронку и корень зуба. Также как и эмаль состоит из неорганической части (70-72%) – солей кальция, и органической части (28-30%). Органическая часть вырабатывается одонтобластами и состоит из коллагеновых волокон и склеивающей массы (мукопротеины). Дентин пронизан радиально идущими канальцами, в которых располагаются отростки одонтобластов, безмякотные нервные волокна и тканевая жидкость, т.е. дентиновые канальцы играют большую роль в питании и иннервации дентина. Участки дентина около пульпы называются околопульпарным дентином и состоит из необызвествленного предентина. Периферические слои (ближе к цементу и эмали) – обызвествленный плащевой дентин. Тела одонтобластов лежат в периферической части пульпы (на границе с дентином). Дентин может регенерировать, после повреждений образуется менее прочный II дентин (коллагеновые волокна располагаются беспорядочно). Иногода наблюдается эктопическое формирование дентина, например в пульпе – называются дентиклами. Причиной образования дентиклов считают нарушения обмена веществ, воспалительные процессы, гиповитаминозы. Дентиклы могут сдавливать кровеносные сосуды и нервные волокна пульпы.
Цемент по химическому составу и гистологическому строению близок к грубоволокнистой костной ткани. На 70% состоит из неорганических солей кальция, на 30% из органических веществ (коллагеновые волокна, аморфное основное вещество). В составе цемента имеются цементобласты и цементоциты, вырабатывающие коллагеновые волокна и основное вещество. Цементобласты и цементоциты располагаются ближе к верхушке корня зуба – это клеточный цемент; ближе к шейке и коронке зуба цементобласты и цементоциты отсутствуют – это бесклеточный цемент. Питание цемента происходит за счет сосудов периодонта, частично со стороны дентина.
Пульпа – мягкая ткань зуба, находится в пульпарной полости. Гистологически пульпа соответствует рыхлой волокнистой соединительной ткани с некоторыми особенностями:
- больше кровеносных сосудов;
- больше нервных волокон и окончаний;
- больше содержание макрофагов;
- не содержит эластических волокон.
В периферической части пульпы (на границе с дентином) располагаются одонтобласты. Пульпа обеспечивает питание дентина и частично эмали и цемента, иннервацию зуба, защиту от микроорганизмов.

 

Кожа и ее производные

ОБЩАЯ ХАРАКТЕРИСТИКА КОЖИ КАК ОРГАНА:
У человека площадь поверхности кожи около 1,5-2 м2 (в зависимости от роста, пола, возраста). Вес кожи (без подкожной жировой клетчатки) – около 5% от общего веса тела, а с подкожной жировой клетчаткой – 16-17%.
Кожа сложный орган, являющийся наружным покровом тела, и поэтому выполняет в первую очередь защитные функции:
- защита от механических воздействий;
- защита от радиационных воздействий (от инфракрасных до УФЛ);
- защита от химических веществ;
- защита от бактериальных воздействий;
- участвует в иммунной защите;
- обладает электрорезистентностью;
- дыхательная функция (до 2% газообмена – через кожу);
- абсорбционная функция (всасывание веществ);
- выделительная функция (шлаки азотистого обмена частично выводятся через потовые железы; при паталогии почек эта функция усиливается;
- участие в терморегуляции (20% тепла отдается путем испарения пота Õ охлаждение поверхности; отдача тепла путем радиации);
- участие в водно-солевом обмене (через потовые железы; в сутки до 500 мл в комфортных условиях, до 10 л при жаре или физической нагрузке);
- участие в жировом обмене (подкожная жировая клетчатка – депо жира);
- участие в витаминном обмене (синтез витамина Д при воздействии УФЛ;
- кожа – огромное рецепторное поле;
- является депо крови (благодаря богатой сосудистой сети депонируется 1л).
Даже простое перечисление функций показывает важность данного органа. Поэтому неспроста врач при осмотре больного большое внимание уделяет коже (цвет, температура, тургор, влажность, запах и т.д.), потому что по этим признакам можно судить о состоянии многих внутренних органов и организма в целом. Например: цвет (синюшность говорит о гипоксии, как симптом заболевания сердечно сосудистой системы или дыхательной системы; бледность – заболевание сердечно сосудистой системы или системы крови; желтушность – заболевание печени); отечность – заболевание сердечно-сосудистой системы или почек; запах (мышиный запах – фенилкетонурия; запах ацетона – при сахарном диабете).

Эмбриональные источники развития.
Кожа развивается из 2-х основных источников:
1. Эктодерма ® эпидермис (многослойный плоский ороговевающий эпителий) и его железистые (потовые, сальные и молочные железы) и роговые производные (волосы и ногти).
2. Дерматомы (часть сомитов) ® собственно кожа или дерма кожи.
Кроме эктодермы и дерматомов при закладке кожи участвуют мезенхима (участвует при закладке дермы кожи, образуются сосуды и мышцы поднимающие волосы) и выселившиеся клетки из ганглиозной пластинки, дифференцирующиеся в меланоциты кожи.

Гистологическое строение кожи.
В коже различают поверхностную часть – эпидермис и дерму кожи (собственно кожа) – соединительнотканная основа кожи.
Эпидермис – многослойный плоский ороговевающий эпителий, в своем составе содержит 5 клеточных дифферонов:
- Основной дифферон: дифферон эпителиоцитов (кератиноцитов), состоит из стволовых клеток, митотически делящихся кератиноцитов, кератиноцитов накапливающих кератогиалин, роговых чешуйек Кроме того кератиноциты под воздействием УФЛ синтезируют витамин Д (антирахитический витамин), участвующий при минерализации костей. ; Кератиноциты в течение своего жизненного цикла постепенно продвигаются в направлении от базальной мембраны к поверхности эпидермиса, при этом размножаются, накапливают роговое вещество кератин — ороговевают и слущиваются с поверхности эпидермиса. Кератиноциты происходящие от общей родоначальной стволовой клетки располагаются в одной вертикальной колонке и называются эпидермальной пролиферативной единицей (ЭПЕ). В центре ЭПЕ находится клетка Лангерганса, окруженная 20-50 кератиноцитами, расположенными во всех слоях эпидермиса в одной вертикальной колонке. В ЭПЕ клетки Лангерганса при помощи кейлонов регулирует пролиферацию и дифференцировку кератиноцитов;
- клетки Лангерганса (синоним — белые отросчатые эпителиоциты), составляют 3% клеток эпидермиса — неправильной формы, отростчатые клетки гематогенного происхождения, имеют митохондрии и лизосомы, выполняют иммунологические функции эпидермальных макрофагов (представляют лимфоцитам А-гены), при помощи кейлонов регулируют пролиферацию и дифференцировку кератиноцитов, при помощи липолитических ферментов лизосом расщепляют цементирующее вещество и способствуют слущиванию роговых чешуек с поверхности эпидермиса;
- меланоциты — грушевидные клетки с отростками. В цитоплазме имеются рибосомы, пластинчатый комплекс Гольджи, меланосомы. В меланоцитах из аминокислоты тирозина под воздействием фермента тирозиназы образуется ДОФА (дигидрооксифенилаланин), а из него под воздействием фермента ДОФА-оксидазы образуется пигмент меланин, защищающий подлежащие ткани от воздействия УФЛ. Синтез меланина регулируется меланотропным гормоном гипофиза и усиливается при воздействии УФЛ. Врожденная неспособность к выработке меланина – альбинизм.
- клетки Меркеля — крупные полигональной формы клетки с короткими выростами. К базальной поверхности этих клеток подходят дендриты чувствительных нейроцитов спинномозговых узлов и образуют нервные окончания – т.е. образуется Меркелевы окончание, являющиеся механорецепторами кожи. Кроме того, клетки Меркеля являются АПУД-клетками и синтезируют гормоноподобные вещества (ВИП, бомбезин, гистамин, энкефалины ит.д);
- лимфоциты, представлены в основном субпопуляцией Т-лимфоцитов; вместе с клетками Лангерганса обеспечивают иммунную защиту.
В эпидермисе имеются 5 слоев:
1. Базальный слой – содержит все 5-х видов клеток:
а) кератиноциты – составляют до 90% клеток слоя; призматические клетки, цитоплазма базофильная и содержит тонофиламенты из кератина. Часто наблюдается фигуры митоза – активно делятся и обеспечивают обновление эпителия, дочерние клетки поднимаются в вышележащие слои. Среди базальных эпителиоцитов имеются стволовые клетки;
б) меланоциты – составляют до 10% клеток слоя;
в) клетки Лангерганса;
г) клетки Меркеля;
д) лимфоциты.
2. Шиповатый слой — состоит из кератиноцитов (большинство клеток слоя), клеток Лангерганса (эпидермальные макрофаги) и лимфоцитов. Кератиноциты этого слоя – полигональные клетки с короткими выростами – шипиками; в цитоплазме усиливается синтез кератина, а из них образуются тонофиламенты, собирающиеся в пучки – тонофибриллы, обеспечивающие упругость и прочность клетки (цитоскелет). Эти клетки активно делятся и участвуют в регенераци эпидермиса. В шиповатом слое встречаются клетки Лангерганса и лимфоциты – обеспечивают иммунную защиту.
3. Зернистый слой – состоит из 3-4 рядов уплощенных кератиноцитов, утративших способность к делению. В клетках зернистого слоя синтезируются кератин, филаггрин, инволюкрин и кератолинин. Филаггрин в виде аморфной массы склеивает кератиновые тонофибриллы, к ним примешиваются продукты распада ядер и органоидов кератиноцитов – в результате образуется сложное соединение кератогиалин (в препарате – выглядят как крупные базофильные гранулы). Инволюкрин и кератолинин под плазмолеммой клеток образуют защитный белковый слой.
4. Блестящий слой – представлен 3-4 рядами плоских погибщих клеток. Границ клеток не видно, ядра разрушены, цитоплазма полностью заполняется массой (элаидин – старое название), состоящей из продольно расположенных кератиновых фибрилл, склееных филаггрином. Эта масса (элаидин) сильно преломляет и отражает свет, поэтому слой блестит – отсюда и название слоя.
5. Роговой слой – состоит из роговых кератиновых пластинок (чешуек), имеющих форму плоских многогранников, расположенных друг на друге в виде монетных столбиков или колонок. Чешуйки имеют толстую прочную оболочку из белка кератолинина, внутри заполнены продольно расположенными кератиновыми фибриллами, связанными между собой бисульфидными мостиками и склеены аморфным кератиновым матриксом. Чешуйки между собой связаны цементирующим веществом, богатым липидами (придает гидрофобность). Ферменты лизосом клеток Лангерганса и кератосом разрушают связи между чешуйками и с поверхности чешуйки слущиваются.
Топографические особенности строения эпидермиса кожи.
1. Отличается толщина эпидермиса в разных участках кожи — от 0,03 мм (на голове) до 1,5 мм (кожа пальцев).
2. Отличается выраженность отдельных слоев эпидермиса, вплоть до отсутствия отдельных слоев.
Питание эпидермиса осуществляется диффузно, через базальную мембрану за счет сосудов дермы кожи.
Дерма кожи состоит из 2-х слоев – сосочковый и сетчатый слои.
1. Сосочковый слой – в виде сосочков вдается в эпидермис, что увеличивает площадь поверхности соприкосновения с эпидермисом. Это облегчает поступление питательных веществ в эпидермис. Сосочковый слой определяет рисунок на поверхности кожи. Причем этот рисунок кожи строго индивидуален и закодировано генетически -–что используется в судебной медицине и криминалистике для идентификации личности (дактилоскопия). Кроме того генетическая детерминированность кожного рисунка используется при диагностике некоторых наследственных заболеваний (дерматоглифика).
Сосочковый слой дермы гистологически состоит из рыхлой волокнистой соединительной ткани, содержит много кровеносных капилляров и нервных окончаний (механо-, термо- и болевые рецепторы). Сосочковый слой обеспечивает питание эпидермиса, является несущей основой эпидермиса.
2)Сетчатый слой дермы кожи – гистологически является плотной неоформленной волокнистой соединительной тканью: много беспорядочно расположенных коллагеновых волокон, между ними имеются фибробласты и фиброциты. Сетчатый слой обеспечивает механическую прочность кожи.

Железистые производные кожи – потовые, сальные и молочные (см. лекцию “Женская половая система”) железы.
Эмбриональное развитие этих желез сходное – из эктодермы в подлежащую мезенхиму прорастают эпителиальные тяжи: из дистального конца этих тяжей образуются секреторные отделы, а из проксимальной части – выводные протоки.
Потовые железы по строению простые трубчатые неразветвленные. Имеют секреторный (концевой) отдел и выводной проток. Секреторный отдел располагается в глубоких слоях сетчатого слоя дермы, представляет собой трубочку, которая сильно извивается и образует клубочек. Стенка секреторного отдела состоит из кубических или цилиндрических секреторных клеток, которые снаружи охвачены отростчатыми миоэпителиальными клетками. Миоэпителиальные клетки имеют сократительные белки и способствуют выдавливанию пота в выводные протоки. Различают апокриновые и мерокриновые (эккриновые) потовые железы.
Морфофоункциональные отличия апокриновых и мерокриновых потовых желез

N Апокриновые потовые железы Мерокриновые потовые железы
Цитоплазма клеток концевого отдела оксифильная Цитоплазма эпителиоцитов концевых отделов слабобазофильная
Концевые отделы более крупные 150-200 мкм Концевые отделы мельше 30 мкм
Тип секреции апокриновый Тип секреции мерокриновый
Локализуются в области гени-талиев, подмышечных впадинах Локализуются во всех остальных участках кожи
Начинают функционировать с периода полового созревания Функционируют с рождения
Состав пота: вода, соли и значительное количество белка (при разложении издают специфический запах) Состав пота: вода, соли и мало белков
Выводной проток имеет прямой ход и открывается в волосяную воронку Выводной проток имеет штопоро-образный ход и открываются само-стоятельно от волос
Функция: у животных – сиг-нальная — для идентификации осо-бей противоположнего пола), у человека значение утратили Функция: участие в терморегуляции, в водно-солевом обмене, выделительная, создает бактерицидную среду, ней-трализует кислоты и щелочи

Сальные железы кожи по строению простые альвеолярные разветвленные.
Секреторные отделы лежат по сравнению с потовыми железами более поверхностно – на границе сосочкого и сетчатого слоя дермы; имеют форму мешочков — альвеол и состоят: в периферической части расположены стволовые и малодифференцированные клетки со слабобазофильной цитоплазмой. По мере продвижения к просвету секреторного отдела клетки (себоциты) теряют способность к делению, накапливают жир и в просвете концевого отдела погибают, разрушаются освобождая накопленное кожное сало, т.е. тип секреции — голокриновый. Выводной проток сальных желез открывается в воронку волоса. Функция сальных желез — выделение кожного сала для:
- жировая смазка для эпидермиса и волос;
- смягчает кожу, придает эластичность;
- придает коже гидрофобные (водоотталкивающие) свойства, защищает от мацерации водой;
- создает бактерицидную среду на поверхности кожи.
В период полового созревания под влиянием половых гормонов усиливается выработка секрета сальных желез, причем иногда настолько, что сало не успевает выделяться на поверхность кожи и накапливается в секреторных отделах. Растягивая стенки альвеол. К этому часто присоединяется местная инфекция — образуются так называемые угри.

Кровоснабжение кожи.

Кожа обильно кровоснабжается. Различают 2 артериальные сплетения:
1. Глубокое артериальное сплетение ( на границе сетчатого слоя дермы с подкожной жировой клетчаткой), их веточки обеспечивают питанием подкожную жировую клетчатку и сетчатый слой кожи с потовыми, сальными железами и корнями волос.
2. Поверхностное артериальное сплетение (на границе сетчатого и сосочкового слоя дермы), от этого сплетения в направление к сосочковому слою отходят веточки, которые распадаются на капилляры петельного типа, питающие эпидермис (диффузно, через базальную мембрану) и участвующие в теплоотдаче.
Вены кожи образуют 3 сплетения.
Благодаря такому обильному кровоснабжению кожи выполняет функции депо крови (до 1 л), участвует в терморегуляции.

Иннервация кожи. Кожа получает и соматическую и вегетативную иннервацию. С вегетативного отдела нервной системы в кожу поступают симпатические и парасимпатические нервные волокна, которые выступают как антогонисты и совместно осуществляют регуляцию функций сосудов кожи, гладкомышечных клеток и желез.
Соматическая иннервация в коже представлена концевыми отделами дендритов чувствительных псевдоуниполярных нейроцитов спинномозговых узлов. Дендриты этих нейроцитов в коже образуют чувствительные рецепторы. Их делят на 2 группы — свободные нервные окончания и инкапсулированные нервные окончания.
I. Свободные нервные окончания — в основном образуются из немиелиновых нервных волокон.
1. Свободные немиелинизированные нервные окончания. Лежат в сосочковом слое дермы, являются рецепторами 3-х видов:
а) механорецепторы (прикосновение, давление, вибрация);
б) терморецепторы;
в) болевые рецепторы.
2. Часть волокон проходит через базальную мембрану в эпидермис и в базальном и шиповатом слоях образуют свободные термо-, механо- и болевые рецепторы.
3. Некоторые немиелинизированные нервные волокна после прохождения через базальную мембрану эпидермиса образуют конечный диск на базальной поверхности клеток Меркеля. т.е. образуют Меркелевы окончания — тоже механорецепторы.
II. Инкапсулированные нервные окончания.
1. Тельца Фатер-Пачини (или пластинчатые нервные окончания) — по функции механорецепторы, реагируют на давление и вибрацию. Локализуются в дерме и подкожной жировой клетчатке. В тельце Фатер-Пачини осевой цилиндр нервного волокна оканчивается булавовидным утолщением и окружается «сердцевиной» — уплощенные, концентрически окружающие осевой цилиндр видоизмененные леммоциты; сердцевина снаружи покрыта тонкой соединительнотканной капсулой.
2. Тельца Мейснера — имеются в коже пальцев, ладоней и подошв. Локализуются в сосочковом слое дермы. В этих тельцах дендрит многократно ветвится как кустик. Веточки кустика имеют форму спирали; кустик окружается концентрически расположенными видоизмененными леммоцитами, снаружи имеется тонкая соединительнотканная капсула. Функция — тактильные рецепторы.
3. Тельца Руффини — располагаются в глубоких слоях дермы и в подкожной жировой клетчатке, особенно много в коже подошвы. Представляют собой округлые образования, в центре телец чувствительное нервное волокно многократно ветвится в виде кустика. Разветвления нервных волокон окружаются и переплетаются коллагеновыми волокнами, снаружи тонка соединительнотканная капсула. Функция — механорецептор, реагируют на натяжение и смещение коллагеновых волокон в окружающей соединительной ткани.
4. Концевые колбы Краузе. В центре колбы 1 или несколько нервных волокон оканчивающихся булавовидными утолщениями, снаружи слабовыраженная соединительнотканная капсула. Функция — механорецептор.
Благодаря обилию чувствительных рецепторов мы можем рассматривать кожу как своеобразный орган чувств или огромное рецепторное поле, при помощи которого организм получает оперативную информацию о состоянии окружающей среды и быстро приспосабливается к этим условиям. Кроме того, кожа иннервируется по сегментарному типу, т.е. каждый сегмент спинного мозга иннервирует одновременно определенные внутренние органы и определенные участки кожи (зоны Захарьина — Геда), причем в пределах данного сегмента имеются связи между нервными путями иннервирующие внутренние органы и иннервирующие участок кожи. Поэтому воздействуя на кожу различными раздражителями мы можем оказать воздействие и на внутренние органы, иннервируемых с этого же сегмента спинного мозга. На этом основаны многие методы рефлексотерапии, в том числе восточные нетрадиционные методы лечения — иглаукалывание, прижигания, точечный массаж.

Дыхательная система


Дыхательная система выполняет следующие функции:
1. Газообмен (обогащение крови кислородом, освобождение от углекислого газа).
2. Участие в водно-солевом обмене (пары воды во выдыхаемом воздухе).
3. Выделительная функция (в основном летучие вещества, например алкоголь).
4. Депо крови (обилие сосудов).
5. Выработка факторов регуляции свертываемости крови (в частности гепарин и тромбопластин).
6. Участие в обмене жиров (сжигание жиров с использованием выделяювшегося тепла для согревания крови).
7. Участие в обонянии.
I. Эволюция легочного дыхания

. Появление легочного дыхания в эволюционной лестнице связано с выходом животных с водной среды на сушу. У рыб жаберное дыхание – вода постоянно пропускается через жаберные щели, растворенный в воде кислород обогащает кровь.
а) впервые легочное дыхание появляется у амфибий – причем у них параллельно существует и легочное дыхание и кожное дыхание. Легкие у амфибий примитвны и представляют собой 2 мешковидных выпячивания, которые открываются почти непосредственно в гортань, т.к. трахея очень короткая;
б) у рептилий дыхательные мешки разделены перегородками на дольки и имеют губчатый вид, более выражены воздухоносные пути;
в) у птиц – бронхиальное дерево сильно разветвлено, легкие разделены на сегменты. У птиц имеются 5 воздухоносных мешков – запасные резервуары вдыхаемого воздуха;
г) у млекопитающих отмечается дальнейшее удлиннение дыхательных путей, увеличение количества альвеол. Кроме сегментов в легких появляются доли, появляется диафрагма.
II. Источники, закладка и развитие дыхательной системы.

Развитие дыхательной системы начинается на 3-й неделе эмбрионального развития. На вентральной стенке переднего отдела I кишки (снутри — материал прехордальной пластинки, средний слой – мезенхима, снаружи – висцеральный листок спланхнотомов) образуется слепое выпячивание. Это выпячивание растет параллельно I кишке, затем слепой конец этого выпячивания начинает дихотомически разветвляться. Из материала прехордальной пластинки образуются: эпителий респираторной части и воздухоносных путей, эпителий желез в стенках воздухоносных путей; из окружающей мезенхимы образуются соединительнотканные элементы и гладкомышечные клетки; из висцеральных листков спланхнотомов – висцеральный листок плевры.
К моменту рождения количество долей, сегментов в основном соответствуют количеству этих образований у взрослых. До рождения альвеолы легких остаются в спавшемся состоянии, выстланы кубическим или низкопризматическим эпителием (т.е. стенка толстая), заполонены тканевой жидкостью с примесью амниотической жидкости. При первом вдохе или крике ребенка после рождения альвеолы расправляются, заполняются воздухом, стенка альвеол растягивается – эпителий становится плоским. У мертворожденного ребенка альвеолы остаются в спавшемся состоянии, под микроскопом эпителий легочных альвеол кубический или низкопризматический (если кусочек легких бросить в воду – они тонут).
Дальнейшее развитие дыхательной системы обуслолено увеличением количества и объема альвеол, удлиннением воздухопроводящих путей. Объем легких к 8 годам увеличивается по сравнениению с новорожденным в 8 раз, к 12 годам – в 10 раз. С 12 летнего возраста легкие по внешнему и внутренному строению близки к таковым у взрослых, но медленное развитие дыхательной системы продолжается до 20-24 летнего возраста.
После 70 лет в дыхательной системе отмечается инволюция:
- истончается эпителий и утолщается; базальная мембрана эпителия воздухопроводящих путей;
- железы воздухопроводящих путей начинают атрофироваться, их секрет сгущается;
- уменьшается количество гладкомышечных клеток в стенках воздухопроводящих путей;
- хрящи воздухоносных путей обызвествляются;
- истончаются стенки альвеол;
- снижается эластичность стенок альвеол;
- атрофируются и склерозируются стенки респираторных бронхиол.
III. Строение дыхательной системы.

Дыхательная система состоит из воздухопроводящих (воздухоносных) путей и респираторного отдела.
Воздухопроводящие пути включают: носовую полость (с придаточными пазухами), носоглотку, гортань, трахею, бронхи (крупные, средние и мелкие), бронхиолы (заканчиваются терминальными или конечными брониолами).
Носовая полость выстлана многорядным мерцательным эпителием, под эпителием распологается собственная пластика слизистой оболочки из рыхлой волокнистой соединительной ткани, где имеютсябольшое количество эластических волокон, сильно выраженное сплетение кровеносных сосудов и концевые отделы слизистых желез. Сосудистое сплетение обеспечивает согревание проходящего воздуха. Благодаря наличию на носовых раковинах обонятельного эпителия (см. лекцию “Органы чувств”) осуществляется рецепция запахов.
Гортань и трахея имеют сходное строение. Состоят из 3-х оболочек – слизистая, фиброзно-хрящевая и адвентициальная.
I. Слизистая оболочка включает:
1. Многорядный мерцательный эпителий (исключение – голосовые связки, там многослойный плоский неороговевающий эпителий).
2. Собственная пластинка слизистой — из рыхлой волокнистой соединительной ткани, содержит слизисто-белковые железы. В трахеи дополнительно имеется подслизистая основа из рыхлой волокнистой соединительной ткани со слизисто-белковыми железами.
II. Фиброзно-хрящевая оболочка – в гортани: щитовидный и перстневидный хрящи из гиалинового хряща, клиновидный и рожковидные хрящи из эластического хряща; в трахее: незамкнутые хрящевые кольца из гиалинового хряща. Хрящи покрыты фиброзным слоем из плотной неоформленной волокнистой соединительной ткани..
III. Адвентициальная оболочка – из рыхлой волокнистой соединительной ткани с сосудами и нервными волокнами.
Бронхи по калибру и особенностям гистологического строения подразделяются на крупные, средние и мелкие бронхи.

Признаки Крупные бронхи Средние бронхи Мелкие бронхи
Диаметр 5-15 мм 2-5 мм 0,5-2 мм
Эпителий (в целом тол-щина умень-шается по мере умень-шения диа-метра брон-хов) Однослойный мно-горядный мерца-тельный, из клеток: мерцательные, бо-каловидные, ба-зальные, эндокрин-ные Однослойный мно-горядный мерца-тельный из клеток (см. крупные бронхи) Многорядный Õ2-х рядныйÕоднослойный цилиндричес-кийÕкубический (кроме перечис-ленных 4-х видов клеток + секретор-ные к.(с-з фермента разрушающий сур-фактант) + каем-чатые (хеморецеп-торы)
К-во миоц-в + ++ +++
Хрящевые элементы Неполные кольца гиалинового хряща Небольшие ос-тровки эластичес-кого хряща Хрящей нет
Железы + ++ -

Функции воздухопроводящих путей:
- проведение (регулируемое!) воздуха в респираторный отдел;
- кондиционирование воздуха (согревание, увлажнение и очистка);
- защитная (лимфоидная ткань, бактерицидные свойства слизи);
- голосообразование;
- рецепция запахов.
Респираторный отдел включает респираторные бронхиолы I, II и III порядка, альвеолярные ходы, альвеолярные мешочки и альвеолы. Респираторные бронхиолы выстланы кубическим эпителием, остальные оболочки истончаются, остаются отдельные миоциты, по ходу имеют редко расположенные альвеолы. В альвеолярных ходах стенка еще более истончается, миоциты исчезают, увеличивается количество альвеол. В альвеолярных мешочках стенка состоит сплошь из альвеол. Совокупность всех разветвлений одной респираторной бронхиолы называется ацинусом, который является морфо-функциональной единицей респираторного отдела. Газообмен в асинуцах идет через стенки альвеол.
Ультраструктура альвеол. Альвеола – пузырек диаметром 120-140 мкм. Внутренняя поверхность альвеол выстлана клетками 3-х типов:
1. Респираторные эпителиоциты (I тип) – резкоуплощенные полигональные клетки (толщина цитоплазмы в безядерных участках 0,2 мкм, в ядросодержащей части – до 6 мкм). На свободной поверхности имеют микроворсинки, увеличивающие рабочую поверхность. Функция: через тонкую цитоплазму этих клеток идет газообмен.
2. Большие (секреторные) эпителиоциты (II тип) – клетки большей толщины; имеют много митохондрий, ЭПС, пластинчатый комплекс и секреторные гранулы с сурфактантом. Сурфактант – поверхностноактивное вещество (снижает поверхностное натяжение), образует тонкую пленку на поверхности эпителиоцитов выстилающих альвеолу и обладает свойствами:
- снижая поверхностное натяжение и препятствует спадению альвеол;
- обладает бактерицидными свойствами;
- облегчает захват и транспорт кислорода через цитоплазму респираторных эпителиоцитов;
- препятствует выпотеванию тканевой жидкости в альвеолы.
3. Легочные макрофаги (III тип) – образуются из моноцитов крови. Клетки подвижные, могут образовать псевдоподии. В цитоплазме имеют митохондрии и лизосомы. После фагоцитирования инородных частиц или микроорганизмов перемещаются в соединительнотканные прослойки между альвеолами и там переваривают захваченные объекты или погибают образуя “кладбища”, окруженные соединительнотканной капсулой (примеры: легкие курильщика и легкие шахтеров).
Респираторные эпителиоциты и большие эпителиоциты располагаются на базальной мембране, снаружи альвеола оплетается эластическими волокнами и кровеносными капиллярами. Между кровью в гемокапиллярах оплетающих альвеолу и воздухом в просвете альвеол находится аэрогематический барьер, который состоит из следующих элементов:
- сурфактантная пленка;
- безядерный участок цитоплазмы респираторного эпителиоцита;
- базальная мембрана альвеолы и гемокапилляра (сливаются !);
- безьядерный участок цитоплазмы эндотелиоцита гемокапилляра.
Понятие об интерстициальной ткани легких = это, ткань, заполняющая пространства между бронхами и бронхиолами, ацинусами и альвеолами. Гистологически представляет собой разновидность рыхлой волокнистой соединительной ткани, отличающаяся следующими особенностями:
1. По клеточному составу – в отличие от обычной рыхлой волокнистой соединительной ткани содержит больше лимфоцитов (образуют лимфоидные скопления, особенно по ходу бронхов и бронхиол – обеспечивают иммунную защиту), большее количество тучных клеток (синтезируют гепарин, гистамин и тромбопластин – регулируют свертываемость крови), большее количество макрофагов.
2. По межклеточному веществу – содержит большее количество эластических волокон ( обеспечивает уменьшение объема альвеол при выдохе).
3. Кровоснабжение – содержит очень большое количество гемокапилляров (газообмен, депо крови).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.