Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Технология приготовления питательных сред для биосинтеза и поддержание чистой культуры



Основу питательных сред для культивирования микроорганизмов составляют источники углерода. Кроме углерода клетки микроорганизмов в процессе роста испытывают потребность в азоте, фосфоре, макро- и микроэлементах. Все вещества этого рода находятся в питательных средах в виде солей, исключение составляют среды, где азот и фосфор могут усваиваться растущими культурами из органических источников, например автолизатов или гидролизатов микробного или животного происхождения.

Отделения приготовления питательной среды представляет собой цех, оборудованный емкостями для хранения жидких и твердых веществ, средствами их транспортировки и аппаратами с перемешивающими устройствами для приготовления растворов, суспензий или эмульсий. При этом питательные соли хранятся обычно в твердом виде, а приготовление их смеси с заданным соотношением компонентов производится в аппарате с мешалкой, куда подаются твердые компоненты в необходимом количестве и далее происходит их растворение. Иногда соединяются и перемешиваются заранее приготовленные растворы. Жидкие и твердые источники углерода обычно вводят в уже готовую питательную среду непосредственно перед ферментацией, так как это устраняет опасность заражения посторонней микрофлорой, вероятность которого возрастает при хранении готовой питательной смеси.

При непрерывном культивировании в производстве микробного белка углеводороды и растворы солей вводят в ферментер раздельно по индивидуальным линиям, а смешение и эмульгирование нерастворимых в воде n-алканов происходит уже в самом биореакторе. При культивировании бактерий на метане последний постоянно барботируют в аппарат через специальные устройства.

При периодической ферментации в начале процесса инокулят (засевная доза микроорганизмов) вносится в уже готовую питательную среду, содержащую все компоненты. Поэтому источники углерода вводят непосредственно перед засевом или отдельные компоненты среды вводят по мере потребления их культурой, поддерживая в ферментере некоторую оптимальную их концентрацию, которая на разных этапах ферментации может меняться по определенному закону.

Важнейшим элементом приготовления питательных сред является соблюдение требований асептики. Это либо создание заданного значения рН, обеспечивающего подавление посторонних микроорганизмов, либо полная стерилизация всех подаваемых потоков и самого биореактора.

Для стерилизации газовых потоков (в первую очередь воздуха) используют процесс фильтрации через специальные волокнистые фильтры с последовательно расположенными фильтрующими элементами. Фильтрующий материал периодически стерилизуется подачей острого пара в отключенный фильтр через заданные промежутки времени. Жидкостные потоки стерилизуют различными методами, из которых практический интерес представляют термический, радиационный, фильтрационный и отчасти химический.

Термический - самый распространенный, при температурах порядка 120-150оС.

Радиационный - -излучение, применяется редко из-за трудностей создания и эксплуатации мощных источников этого излучения.

В отдельных случаях применяют химические стерилизующие агенты (вещества с ярко выраженным асептическим действием). Основная проблема в этом случае - необходимость устранения стерилизующего агента из питательной среды после гибели микрофлоры до внесения инокулята. Химические антисептики должны быть не только высокоэффективны, но и легко разлагаемы при изменении условий после завершения стерилизации. К числу лучших относится пропиолактон, обладающий сильным бактерицидным действием и легко гидролизуемый в молочную кислоту.

Мало распространен и метод фильтрации, что объясняется аппаратными трудностями. Метод основан на способности полупроницаемых мембран с крупными порами пропускать жидкую фазу и концентрировать клетки микроорганизмов. В принципе этот метод является идеальным для стерилизации термически неустойчивых жидких и газовых средств, поскольку может осуществляться при низкой температуре и требует лишь градиента давления по разные стороны мембраны. Основная трудность - наличие термостойких мембран, способных выдерживать многократную стерилизацию их самих. В настоящее время эта проблема решается путем применения термостойких полимеров в производстве мембран.

В заключение заметим, что ряд субстратов не требует стерилизации, так как они сами обладают асептическим действием; сюда относят метанол, этанол, концентрированная уксусная кислота и др. В этом случае ограничиваются стерилизацией прочих элементов питательной среды.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.