Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

В колишньому Радянському Союзі було кілька електростанцій з блоками, які аналогічні описаному. Такі електростанції працюють також в Болгарії, ФРН, Фінляндії та інших країнах



ЗМІСТ

ВСТ УП…………………………………………………………………3

Розділ 1. Принципові теплові схеми АЕС…………4

Розділ 2. Вплив атомних станцій на навколишнє середовище…….11

Розділ 3. Знешкодження та переробка рідких радіоактивних речовин…….14

Розділ 4. Вплив радіоактивних відходів на людину та навколишнє середовище……………………………………………………..17

Висновок…………………………………………………………..19

Список літературних джерел……………………………21

 

 


 

ВСТУП

 

Сьогодні електроенергію можна отримувати найрізноманітнішими способами, але до основних джерел виробництва електричної енергії прийнято відносини ТЕС (теплові електростанції – отримання енергії за рахунок спалювання вугілля, газу або нафтопродуктів), ГЕС (гідроелектростанції – отримання електроенергії за рахунок перепаду рівня води, яка обертає гідротурбіни), АЕС (атомні електростанції – відносно нові, але досить поширені електростанції, які дають змогу отримувати з атомної енергії електроенергію). У представленій дослідній роботі я постаралася визначити шляхи виробництва електроенергії.

Предмет дослідження:АЕС в навколишньому світі.

Об'єкт дослідження:Виробництво електроенергії в навколишньому середовищі.

Мета:Простежити шляхи виробництва електроенергії.

Завдання роботи:

1. Зібрати інформацію про виробництво електроенергії.

 

2. Придбати навички дослідницької роботи та її комп'ютерного оформлення.

 

 


 

Розділ 1.

Принципові теплові схеми АЕС

В наш час будуються АЕС, що працюють за різними схемами, але найбільш розповсюдженими є двоконтурні АЕС з водяним теплоносієм та одноконтурні з реактором киплячого типу.

Перша АЕС була побудована в Радянському Союзі та введена в експлуатацію в червні 1954 р. Ця станція поклала початок використанню атомної енергії для виробництва електроенергії. На станції необхідно було перевірити роботу основних елементів та показати можливість в промислових установках перетворити енергію поділу ядер в електричну. Параметри установки були низькими, теплова схема дуже спрощена, а електрична потужність складала всього 5000 кВт . Електростанція була спроектована для роботи по двоконтурній схемі. Досвід експлуатації її довів що двоконтурні АЕС цілком надійні, а їх робота найменшим чином впливає на довкілля та здоров’я обслуговуючого персоналу. Роботи, що були проведені в наступні роки на установках електричною потужністю 210, 365, 440 МВт (на Нововоренезькій АЕС), дозволили створити серії крупних енергетичних блоків, що експлуатуються в наш час на кількох АЕС колишнього Радянського Союзу. Одночасно були розроблені та побудовані блоки конденсаційних АЕС великої потужності, що працюють по одно контурній схемі.

Принципова схема блоку двоконтурної АЕС з реатором ВВЕР-440 та турбінами К-220-44 показана на рис. 1. Блок складається з одного реактора, шести циркуляційних петель за парогенераторами (ПГ) та двох турбогенераторів потужністю 220 Мвт кожний. Теплова потужність реактора складає 1370 Мвт.

Тиск в першому контурі прийнятий рівно 12,2 МПа та підтримується компенсатором об’єму з електричним обігрівом (з паровою подушкою). Температура теплоносія на вході в реактор = 270 °С, а на виході – 300 °С, при таких умовах в ПГ генерується пар тиском 4,6 МПа. Продуктивність кожного ПГ складає 450 т/г.

Турбіна К-220-44 на 3000 об/хв. має 8 регенеративних відборів: 5 з циліндрів високого тиску та 3 з циліндру низького тиску. Циліндр Високого тиску (ЦВТ) одно потоковий, обидва циліндра низького тиску (ЦНТ) двопотокові. Тиск пари на виході з ЦВТскладає 0,3 МПа. Вторинний перегрів пари ведеться до 241°С, при такому тиску на вході в ПНД турбіни складає 0,268 МПа. До першого ступеня проміжного перегріву підводиться відбірний пар тиском 1,9 МПа, до другого - свіжий пар.Температура поживної води = 225°С. Турбіна проектується в двух модифікаціях: на розрахунковий тиск ρк = 0,0031 та 0,0051МПа. При ρк = 0,0031 МПа ККД станції складає 32%, тобто значно вище ККД устаткування першої черги Нововоронезької АЕС. ККД електростанцій нетто при цьому = 29,7%.

Продувочні води першого контуру реактора та ПГ очищуються в іонітних фільтрах, після чого повертаються в контур реактора та ПГ. До поступання води в фільтри потоки охолоджуються, однак більша частина тепла при цьому повертається в контури теплоносія та трубопроводи поживної води ПГ. Схема використання тепла показана на рис. 1.

На блоках можуть встановлюватись мережеві підігрівачі установки, які слугують для покриття теплових навантажень (на опалення, вентиляцію та побутові потреби) АЕС та житлового масиву біля АЕС. Теплове навантаження установки при нагріві води від 70 до 130 °С складає ≈ 105 ГДж/год.

В колишньому Радянському Союзі було кілька електростанцій з блоками, які аналогічні описаному. Такі електростанції працюють також в Болгарії, ФРН, Фінляндії та інших країнах.

Зазвичай електростанції з турбінами К-220-44 складаються з двох блоків електричною потужністю 440 Мвт. Потужність електростанцій при цьому = 880 МВт.

В СРСР також були споруджені двоконтурні АЕС з турбінами потужністю 500 МВт та реакторами електричної потужності 1000 МВт. Блок такої станції складається з одного реактора ВВЕР-1000 тепловою потужністю 3000 МВт, чотирьох петель з ПГ та двох турбін К-500-60.

Принципова схема блока показана на мал. 2. Як видно з рисунку, тиск пари перед турбіною піднято до 5,9 МПа. Щоб здійснити це, знадобилося підвисити температуру теплоносія та тиску в першому контурі АЕС. Температура теплоносія на вході в реактор – 288 °С, а на виході – 322 °С, тиск в контурі теплоносія складає 15,7 МПа.

На АЕС що розглядається встановлюються тихохідні турбіни (n = 1500 об/хв.). На турбінах з частотой обертання 1500 об/хв. довжина лопатки останньої ступені та середній діаметр її можуть бути суттєво збільшені. Це дає можливість при однакових початкових та кінцевих параметрах та однаковій кількості вихлопів створити турбоагрегати великої потужності.

На турбіні що розглядається довжина лопатки останньої ступені складає 1450 мм, а середній діаметр її – 4150 мм, в той час як на турбіні К-220-44 ці величини відповідно дорівнюють 1050 та 2550 мм. Таке різке збільшення вихлопного перерізу дозволило створити турбіну з двопотоковим ЦНД.

Турбіна має 7 регенеративних відборів. Деаератор підключений до третього відбору по ходу пари та складає разом з поверхневим підігрівачем цього відбору одну ступінь підігріва. Також як і на блоці з турбіною К-220-44, всі ПВД мають вбудовані охолоджувачі дренажу. Охолоджувачі дренажу мають також на лінії між підігрівачами П1 та П2, а також між підігрівачами П3 та П4. Після ЧВД турбіни потік пари проходить сепаратор та двоступінчатий пароперегрівач. Тиск пари на вході в ЧСД турбіни складає 1,08 МПа, температура – 250 °С. Установка розрахована на тиск в конденсаторі ρк = 0,0059 МПа. Температура поживної води – 226 °С.

Увесь потік конденсатора турбіни пропускається крізь блочну знесолюючу установку (БЗУ), тому конденсатні насоси встановлюються в два ступені: безпосередньо після конденсатора та за БЗУ.

Привід поживного насосу турбінний. До приводної турбіни підводиться перегрітий пар, що відбирається з потоку після пароперегрівача. Відпрацьований пар конденсується в конденсаторі привідної турбіни, тиск в цьому конденсаторі підтримується близьким до тиску в конденсаторі турбіни К-500-60. На кожній турбіні блоку встановлюється 1 робочий насос з турбопривідом. Таким чином , на блоці є 2 таких насоси. Обидва насоси подають воду в один спільний колектор, від якого живляться всі ПГ.

ККД блоку брутто складає 33,3%, ККД нетто – 31,7%.

АЕС з газовими теплоносіями на пострадянському просторі не будувались. Такі електростанції отримали широке використання в Великобританії, окремі блоки були побудовані в США, Франції та інших країнах. Промислові АЕС що експлуатуються в наш час в Великобританії – це станції з уран-графітовими реакторами, що працюють на природному урані. Прототипом їх є АЕС «Колдер-Холл»

АЕС «Колдер-Холл» Загальною потужністю 184 МВт була спроектована з чотирьох блоків, кожний з яких включає реактор, чотири ПГ та дві турбіни потужністю 23 МВт кожна. Реактор охолоджується вуглекислим газом, що циркулює по замкненому контуру. Тиск газу ≈ 0,7 МПа, температура на виході з реактору 336 °С , на вході в реактор 135 °С. В ПГ генерується пар двох тисків. Тиск в контурі підвищеного тиску (контур ПВТ) складає 1,45 МПа, температура на виході з пароперегрівача tпе = 313 °С; в контурі низького тиску (контур ПНТ) ρ = 0,36 МПа, tпе = 185 °С. В ресіверах низького та підвищеного тиску збирається пар від всіх ПГ блоку. АЕС призначалась головним чином для виробництва плутонію (в військових цілях), електроенергія тут є побічним продуктом.

За типом АЕС «Колдер-Холл» в Великобританії було побудовано ще кілька електростанцій. Всі ці електростанції проектувались з двома реакторами. Спочатку загальна електро-потужність кожної з таких електростанцій складала 275-300 МВт, пізніше – 500-550 МВт. Теплова потужність реактора підвищувалась по мірі збільшення його розмірів, підвищення тиску теплоносія та вдосконалення активної зони. Тиск СО2 був піднятий до 2 МПа, а діаметр реактора в останніх конструкціях досяг 20-22 м. Такі апарати могли бути створені тільки в результаті суттєвого вдосконалення зварювальної техніки. На ряду з цим також підвищувались параметри пару. На всіх реакторах такого типу в якості покриття ТВЕЛів використовується магнієвий сплав (магнокс). При такому покритті температура газу на виході з реактору може бути піднята до 400-420 °С. При цьому для циклу двох тисків в контурі перегріву може прийматися ПВТ можна генерувати пар тиском 4,0 – 5,0 МПа. Температура перегріву може прийматися за 390-400 °С. Приблизно на таких параметрах працюють АЕС Великобританії даного типу. ККД нетто електростанції при цьому сягає ≈ 30%.

Реактор працює на збагаченому урані з торієм, сповільнювачем слугує графіт, а теплоносієм – гелій. Активна зона реактору розділена на 73 секції. Розподіл гелію каналами активної зони відбувається так, щоб на виході з кожної секції температура його була однакова. Регулювання відбувається дросельними вентилями як при пуску, так і під час експлуатації.

Теплоносій циркулює по шістьох головних циркуляційних контурах. В кожному контурі встановлена одна газодувка з турбоприводом (рис. 3). Тиск газу на виході з газодувок складає 4,8 МПа, температура на вході в реактор дорівнює 340 °С, на виході 760°С.

 


 

Розділ 2.

Вплив атомних станцій на навколишнє середовище

Техногенні впливи на навколишнє середовище при будівництві й експлуатації атомних електростанцій різноманітні. Звичайно говорять, що маються фізичні, хімічні, радіаційні й інші фактори техногенного впливу експлуатації АЕС на об'єкти навколишнього середовища.

 

Найбільш істотні фактори - локальний механічний вплив на рельєф - при будівництві, стік поверхневих і ґрунтових вод, що містять хімічні і радіоактивні компоненти, зміна характеру землекористування й обмінних процесів у безпосередній близькості від АЕС, зміна мікрокліматичних характеристик прилеглих районів.

 

Виникнення могутніх джерел тепла у виді градирень, водойм - охолоджувачів при експлуатації АЕС звичайно помітним чином змінює мікрокліматичні характеристики прилеглих районів. Рух води в системі зовнішнього тепловідводу, скидання технологічних вод, що містять різноманітні хімічні компоненти впливають на популяції, флору і фауну екосистем.

 

Особливе значення має поширення радіоактивних речовин у навколишнім просторі. У комплексі складних питань по захисту навколишнього середовища велику суспільну значимість мають проблеми безпеки атомних станцій (АС), що йдуть на зміну тепловим станціям на органічному викопному паливі. Загальновизнано, що АС при їхній нормальній експлуатації набагато - не менш чим у 5-10 разів "чистіше" в екологічному відношенні теплових електростанцій (ТЕС) на куті. Однак при аваріях АС можуть робити істотний радіаційний вплив на людей, екосистеми. Тому забезпечення безпеки екосфери і захисту навколишнього середовища від шкідливих впливів АС - велика наукова і технологічна задача ядерної енергетики, що забезпечує її майбутнє.

 

Відзначимо важливість не тільки радіаційних факторів можливих шкідливих впливів АС на екосистеми, але і теплове і хімічне забруднення навколишнього середовища, механічний вплив на мешканців водойм-охолоджувачів, зміни гідрологічних характеристик прилеглих до АС районів, тобто весь комплекс техногенних впливів, що впливають на екологічне благополуччя навколишнього середовища.

Вихідними подіями, що розвиваючись у часі, у кінцевому рахунку можуть привести до шкідливих впливів на людину і навколишнє середовище, є викиди радіоактивності і токсичних речовин із систем АС. Ці викиди поділяють на газові й аерозольні, що викидаються в атмосферу, у яких шкідливі домішки присутні у виді розчинів чи мілкодисперсних сумішей, що попадають у водойми. Можливі і проміжні ситуації, як при деяких аваріях, коли гаряча вода викидається в атмосферу і розділяється на пару і воду.

 

Викиди можуть бути як постійними, що знаходяться під контролем експлуатаційного персоналу, так і аварійними, залповими. Включаючи в різноманітні рухи атмосфери, поверхневих і підземних потоків, радіоактивні і токсичні речовини поширюються в навколишнім середовищі, попадають у рослини, в організми тварин і людини. На малюнку показані повітряні, поверхневі і підземні шляхи міграції шкідливих речовин у навколишнім середовищі. Вторинні, менш значимі для нас шляхи, такі як вітрове переміщення пилу і випарів, як і кінцеві споживачі шкідливих речовин на малюнку не показані.


 

Розділ 3.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.