Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Шаг в сторону и обобщение. Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических

Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии с определением вычитания найти число, которое дает 3, если к нему добавить 5. Перебрав все целые положительные числа (а ведь в правилах говорится только о таких числах), вы скажете, что задача не решается. Однако можно сделать то, что потом станет системой, великой идеей: наткнувшись на неразрешимую задачу, надо сначала отойти в сторону, а затем обобщить. Пока алгебра состоит для нас из правил и целых чисел. Забудем о первоначальных определениях сложения и умножения, но сохраним правила (22.1) и (22.2) и предположим, что они верны вообще не только для целых положительных чисел (для них эти правила были выведены), а для более широкого класса чисел. Раньше мы за­писывали целые положительные числа в виде символов, чтобы вывести правила; теперь правила будут определять символы, а символы будут представителями каких-то более общих чисел. Манипулируя правилами, можно показать, что 3-5=0-2. Давайте определим новые числа: 0-1, 0-2, 0-3, 0-4 и т. д. и назовем их целыми отрицательными числами. После этого мы сможем решить все задачи на вычитание. Теперь вспомним и о других правилах, например a(b+c)=ab+ac; это даст нам правило умножения отрицательных чисел. Перебрав все пра­вила, мы увидим, что они верны как для положительных, так и для отрицательных чисел.

Мы значительно расширили область действия наших пра­вил, но достигли этого ценой изменения смысла символов.

Уже нельзя, например, сказать, что умножить 5 на -2 - значит сложить 5 минус два раза. Эта фраза бессмысленна. Тем не менее, пользуясь правилами, вы всегда получите вер­ный результат.

Возведение в степень приносит новые хлопоты. Кто-нибудь обязательно захочет узнать, что означает символ а(3-5). Мы зна­ем, что 3-5 это решение уравнения (3-5)+5=3. Следовательно, мы знаем, что а(3-5)а53. Теперь можно разделить на а5, тогда а(3-5)35. Еще одно усилие, и вот окончательный ре­зультат: а(3-5) =1/а2. Таким образом, мы установили, что воз­ведение числа в отрицательную степень сводится к делению единицы на число, возведенное в положительную степень. Все было бы хорошо, если бы 1/а2 не было бессмысленным символом. Ведь а — это целое положительное или отрицательное число, значит, а2 больше единицы, а мы не умеем делить единицу на числа, большие чем единица!

Система так система. Натолкнувшись на неразрешимую за­дачу, надо расширить царство чисел. На этот раз нам трудно делить: нельзя найти целого числа ни положительного, ни от­рицательного, которое появилось бы в результате деления 3 на 5. Так назовем это и другие подобные ему числа рациональ­ными дробями и предположим, что дроби подчиняются тем же правилам, что и целые числа. Тогда мы сможем оперировать дробями так же хорошо, как и целыми числами.

Еще один пример на степень: что такое а3/5? Мы знаем толь­ко, что (3/5) 5=3, ибо это определение числа 3/5, и еще, что (а3/5)5 =a(3/5)5, ибо это одно из правил. Вспомнив определение

корня, мы получим а(3/5)= . Определяя таким образом дро­би, мы не вводим никакого произвола. Сами правила следят за тем, чтобы подстановка дробей вместо написанных нами сим­волов не была бессмысленной процедурой. Замечательно, что эти правила справляются с дробями так же хорошо, как и с целыми числами (положительными и отрицательными)!

Пойдем дальше по пути обобщения. Существуют ли еще урав­нения, которых мы не научились решать? Конечно. Например, нам не под силу уравнение b=21/2=Ö2. Невозможно найти рациональную дробь, квадрат которой равен 2. В наше время это выяснить довольно просто. Мы знаем десятичную систему и не пугаемся бесконечной десятичной дроби, которую можно использовать для приближения корня из двух. Хотя идея та­кого приближения появилась еще у древних греков, однако усваивалась она с большим трудом. Чтобы точно сформули­ровать суть такого приближения, надо постичь такие высокие материи, как непрерывность и соотношения порядка, а это очень трудный шаг. Это сделал Дедекинд очень точно и очень формально. Однако, если не заботиться о математической стро­гости, легко понять, что числа типа Ö2 можно представить в виде целой последовательности десятичных дробей (потому что если остановиться на какой-нибудь десятичной дроби, то получится рациональное число), которая все ближе и ближе подходит к желанному результату. Этих знаний нам вполне до­статочно; они позволят свободно обращаться с иррациональ­ными числами и вычислять числа типа Ö2 с нужной точностью.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.