Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Переходные колебания в электрических цепях



Энергия осциллятора

Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займемся ею.

Чему равна кинетическая энергия осцил­лятора? Она пропорциональна квадрату скоро­сти. Здесь мы затронули важный вопрос. Пред­положим, что мы изучаем свойства некоторой величины А; это может быть скорость или еще что-нибудь. Мы обратились к помощи ком­плексных чисел: A==Âехр(iwt), но в физике праведна и чтима только действительная часть комплексного числа. Поэтому если вам для чего-нибудь понадобится получить квадрат А, то не возводите в квадрат комплексное число, чтобы потом выделить его действительную часть.

Действительная часть квадрата комплексно­го числа не равна квадрату действительной ча­сти, она содержит еще и мнимую часть первона­чального числа. Таким образом, если мы захо­тим найти энергию и посмотреть на ее превра­щения, нам придется на время забыть о комп­лексных числах.

Итак, истинно физическая величина А — это действительная часть A0exp[i(wt+D)], т. е.

A=A0соs(wt+D), а комплексное число А — это j4oexp(iD). Квадрат этой физической величины равен A20cos2(wt+D). Он изменяется от нуля до максимума, как это предписывается квадра­том косинуса. Максимальное значение квадрата косинуса равно 1, минимальное равно 0, а его среднее значение — это 1/2.

Зачастую нас совсем не интересует энергия в каждый дан­ный момент колебания; во многих случаях достаточно знать лишь среднюю величину A2 (среднее значение квадрата А в те­чение времени, много большего, чем период колебаний). При этих условиях можно усреднить квадрат косинуса и доказать теорему: если А представляется комплексным числом, то сред­нее значение А2 равно 1/2A20. Здесь А20это квадрат модуля комплексного числа А. (Квадрат модуля Â записывают по-раз­ному;

|Â |2 или ÂÂ *— в виде произведения числа Â на комплек­сно сопряженное.) Эта теорема пригодится нам еще много раз.


Итак, речь идет об энергии осциллятора, на который дейст­вует внешняя сила. Движение такого осциллятора описывается уравнением

 


Мы, конечно, предполагаем, что F(t) пропорциональна coswt. Выясним теперь, много ли приходится этой силе работать. Ра­бота, произведенная силой в 1 сек, т. е. мощность, равна произ­ведению силы на скорость. [Мы знаем, что работа, совершаемая за время dt, равна Fdx, а мощность равна F(dx/dt).] Значит,

 

 

Как легко проверить простым дифференцированием, первые два члена можно переписать в виде (d/dt)][l/2m(dx/dt)2+1/2mw2x2]. Выражение в квадратных скобках — производная по времени суммы двух членов. Это понятно; ведь первый член суммы — кинетическая энергия движения, а второй — потенциальная энергия пружины. Назовем эту величину запасенной энергией, т. е. энергией, накопленной при колебаниях. Давайте усред­ним мощность по многим циклам, когда сила включена уже давно и осциллятор изрядно наколебался. Если пробег длится долго, запасенная энергия не изменяется; производная по вре­мени дает эффект, в среднем равный нулю. Иными словами, если усреднить затраченную за долгое время мощность, то вся энергия поглотится из-за сопротивления, описываемого членом gm(dx/dt)2. Определенную часть энергии осциллятор, конечно, запасет, но если усреднять по многим циклам, то количество ее не будет меняться со временем. Таким
образом, средняя мощ­ность <P> равна

 

Применяя метод комплексных чисел и нашу теорему о том, что <А2>=1/2A20, легко найти эту среднюю мощность. Так как

, то . Следовательно, средняя мощность равна

<P>=1/2gw2x20. (24.4)

Если перейти к электрическим цепям, то dx/dt надо заменить на ток I (I — это dq/dt, где q соответствует х), а gmна сопро­тивление R. Значит, скорость потери энергии (мощности силы) в электрической цепи равна произведению сопротивления на средний квадрат силы тока

<Р>=R<I2>=Rl/2I20. (24.5)

Энергия, естественно, переходит в тепло, выделяемое сопро­тивлением; это так называемые тепловые потери, или джоулево тепло.


Интересно разобраться также в том, много ли энергии может накопить осциллятор. Не путайте этого вопроса с вопросом о средней мощности, ибо хотя выделяемая силой мощность сна­чала действительно накапливается осциллятором, потом на его долю остается лишь то, что не поглотило трение. В каждый мо­мент осциллятор обладает вполне определенной энергией, по­этому можно вычислить среднюю запасенную энергию <E>. Мы уже вычислили среднее значение (dx/dt)2, так что

 

Если осциллятор достаточно добротен и частота w близка к w0, то ½х½большая величина, запасенная энергия очень велика и можно накопить очень много энергии за счет небольшой силы. Сила производит большую работу, заставляя осциллятор рас­качиваться, но после того, как установилось равновесие, вся сила уходит на борьбу с трением. Осциллятор располагает большой энергией, если трение очень мало, и потери энергии невелики даже при очень большом размахе колебаний. Доб­ротность осциллятора можно измерять величиной запасенной энергии по сравнению с работой, совершенной силой за период колебания.

Что это за величина — накопленная энергия по сравнению с работой силы за цикл? Ее обозначили буквой Q. Величина Q — это умноженное на 2pотношение средней запасенной энер­гии к работе силы за один цикл (можно рассматривать работу не за цикл, а за радиан, тогда в определении Q исчезнет 2p)


Пока Q не слишком велика — это плохая характеристика системы, если же Q довольно большая величина, то можно сказать, что это мера добротности осциллятора. Многие пыта­лись дать самое простое и полезное определение Q; разные оп­ределения немногим отличаются друг от друга, но если Q очень велика, то все они согласуются друг с другом. При самом общем определении по формуле (24.7) Q зависит от w. Если мы имеем дело с хорошим осциллятором вблизи резонансной частоты, то (24.7) можно упростить, положив w = w0, тогда Q=w0/g, такое определение Q было дано в предыдущей главе. Что такое Q для электрической цепи? Чтобы найти эту ве­личину, надо заменить mна L, mg на R и mw20 на 1/С(см. табл. 23.1). Тогда q в точке резонанса равна Lw/R, где w — ре­зонансная частота. В цепи с большой Q запасенная цепью энергия велика по сравнению с работой за один цикл, произ­водимой поддерживающей колебания в цепи машиной.

Затухающие колебания


Вернемся к основной теме — переходным решениям. Пе­реходными решениями называются решения дифференциаль­ного уравнения, соответствующие ситуации, когда внешняя сила не действует, но система тем не менее не находится в покое. (Конечно, лучше всего решать задачу, когда сила не действует, а система покоится, покоится — ну и пусть покоится!) Соответ­ствующие переходным решениям колебания можно вызвать так: заставить силу поработать, а потом выключить ее. Что тогда случится с осциллятором? Сначала подумаем, как будет вести себя система с очень большой Q. Если сила действовала долго, то запасенная энергия была постоянной и работа тратилась лишь для того, чтобы поддержать ее. Предположим теперь, что мы выключили силу, тогда трению, которое раньше поглощало энергию поставщика, питаться больше нечем — кормильца-то нет. И трение начинает пожирать запасенную осциллятором энергию. Пусть добротность системы Q/2p=1000. Это значит, что работа, произведенная за цикл, равна 1/1000 запасенной энергии. Пожалуй, разумно предположить, что при не поддерживае­мых внешней силой колебаниях за каждый цикл будет теряться одна тысячная часть имеющейся к началу цикла энергии. Будем считать, что при больших Q изменение энергии описывается угаданным нами приближенным уравнением (мы еще вернемся к этому уравнению и сделаем его совсем верным!)

 

Уравнение это приближенное, потому что оно справедливо только для больших Q. За каждый радиан система теряет 1/Q часть запасенной энергии Е. Значит, за промежуток времени dt энергия уменьшится в (wdt/Q раз (частота появляется при переводе радианов в настоящие секунды). А какая это частота? Предположим, что система устроена очень жестко, поэтому даже при действии силы она сколько-нибудь заметно колеблется толь­ко со своей собственной частотой. Поэтому будем считать, что w — это резонансная частота w0. Таким образом, из уравнения (24.8) следует, что запасенная энергия меняется
следующим образом:

 


Теперь нам известно значение энергии в любой момент. Какой будет приближенная формула, определяющая амплитуду коле­баний как функцию времени? Той же самой? Нет! Потенциаль­ная энергия пружины изменяется как квадрат смещения, кинетическая энергия — как квадрат скорости; это приводит к тому, что полная энергия пропорциональна квадрату сме­щения. Таким образом, смещение (амплитуда колебаний) будет уменьшаться с половинной скоростью. Иначе говоря, мы ожидаем, что решение в случае затухающего переходного дви­жения будет выглядеть как колебание с частотой, близкой к ре­зонансной частоте w0; амплитуда этого колебания будет умень­шаться как ехр(-gt/2)


Эта формула и фиг. 24.1 дают представление о том, чего следует ожидать, а теперь приступим к точному анализу движе­ния, т. е. к решению дифференциального уравнения движения.

 

 

Фиг. 24.1. Затухающие колебания.

 

Как же решить уравнение (24.1), если выкинуть из него внешнюю силу? Будучи физиками, мы интересуемся не столько методом, сколько самим решением. Поскольку мы люди уже опытные, попытаемся представить решение в виде экспоненци­альной кривой, х=Аexp(iat). (Почему мы так поступили? Оттого, что экспоненту легче всего дифференцировать!) Подставим это выражение в (24.1), помня о том, что каждое дифференцирование х по времени сводится к умножению на ia [напомним, что F(t)=0]. Сделать это очень легко, и наше уравнение примет вид

( -a2+iga+w20)Аеiat=0. (24.11)


Левая часть равенства должна быть равна нулю все время, но это возможно только в двух случаях: а) А=0, однако это даже и не решение: ведь тогда все покоится, или б)

 


Если мы сможем решить это уравнение и найти a, то мы найдем и решение, амплитуда которого А не обязательно равна нулю!

 


Чтобы не думать о том, как извлечь квадратный корень, предположим, что g меньше w0, и поэтому w20-g2/4 — положи­тельная величина. Беспокоит другое: почему мы получили два решения! Им соответствуют

 


и

 


Займемся пока первым решением, предположив, что мы ничего не знаем о том, что квадратный корень принимает два значе­ния. В этом случае смещение х равно x1=Aexp(ia1t), где А — произвольная постоянная. Чтобы сократить запись, введем специальное обозначение для входящего в at квадратного корня:

 

Так, и , или, если воспользоваться замечательным свойством экспоненты,


 

Итак, система осциллирует с частотой wg , которая в точности не равна частоте w0, но практически близка к ней, если система достаточно добротна. Кроме того, амплитуда колебаний экспо­ненциально затухает! Если взять действительную часть (24.16), то мы получим


 

Это решение очень напоминает угаданное нами решение (24.10), вот только частота немного другая, wg. Но это лишь небольшая поправка, значит, первоначальная идея была правильной.

И все-таки не все благополучно! А не благополучно то, что су­ществует второе решение.


Этому решению соответствует a2, и оно отличается от пер­вого лишь знаком wg

 

 


Что все это значит? Скоро мы докажем, что если x1и х2воз­можные решения (24.1) при F(t)=0, то х12—тоже решение этого уравнения! Таким образом, общее решение имеет вид

 


Теперь можно спросить: «А, собственно, зачем нам беспокоить себя еще одним решением, если нас вполне устраивало первое? К чему эти дополнительные решения, если мы все равно должны взять только действительную часть?» Мы знаем, что нужно взять действительную часть, но откуда математика знает, что мы хо­тим взять действительную часть? Когда у нас была внешняя сила F(t), то мы ее дополнили искусственной силой, и она каким-то образом управляла мнимой частью уравнения. Но когда мы по­ложили F(t)=0, то соглашение о том, что, каково бы ни было х, нужно взять только его действительную часть, стало нашим лич­ным делом, и математическое уравнение об этом ничего не знало. В мире физики есть только действительные решения, но реше­ние, которому мы так радовались, комплексно. Уравнению не из­вестно, что мы делаем совершенно неожиданный шаг и отбираем только действительную часть, и оно предлагает нам еще, так сказать, комплексно сопряженное решение, чтобы, сложив оба решения, мы получили настоящее действительное решение; вот для чего мы взяли еще и a2. Чтобы х было действительным, Ввхр(-iwgt) должно быть комплексно сопряженным к Aexp(iwgt) числом, тогда мнимая часть исчезнет. Таким образом, В долж­но быть комплексно сопряжено с А, поэтому наше решение имеет вид

 

 

Значит, наши колебания — это колебания с фазовым сдвигом и, как полагается, с затуханием.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.