Помощничек
Главная | Обратная связь

...

Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

РАСЧЛЕНЕНИЕ ПРОДУКТИВНОЙ ЧАСТИ РАЗРЕЗА СКВАЖИНЫ



 

Расчленение продуктивной части разреза скважины — это выделение слоев различного литологического состава, установление последовательности их залегания и в конечном итоге выделение коллекторов и непроницаемых разделов между ними. Решаются эти задачи с помощью ком­плекса методом изучения разрезов. В этом комплексе в на­стоящее время основное место занимают геофизические ме­тоды, которыми в обязательном порядке исследуются сква­жины всех категорий (поисковые, разведочные, нагнетатель­ные и др.). Данные геофизических исследований увязываются с имеющимися геологическими данными описания и анализа образцов пород (шлама, керна), с данными опробования ин­тервалов на приток и с результатами исследования скважин гидродинамическими методами.

Достоверность расчленения зависит от степени изученнос­ти геологического разреза, уровня теоретической разработки геофизических методов исследования скважин и общей гео­физической характеристики района, полученной сейсмичес­кими методами. Выделению коллекторов по геофизическим данным способствует наличие характерных показаний на различных геофизических кривых. Интерпретация кривых наиболее достоверна при совместном использовании в ком­плексе геофизических и геологических исследований. При этом следует иметь в виду, что керн в ряде случаев не дает достаточно полного представления о положении границ в разрезе залежи. Это связано с низким процентом выноса керна, обусловленным несовершенством колонковых долот, вследствие чего на поверхность поднимаются преимущест­венно более крепкие и глинистые породы, а рыхлые и силь­нотрещиноватые не всегда выносятся. Длина полученного керна может быть меньше длины интервала проходки, что затрудняет точную привязку керна к глубинам.

Выделение коллекторов в терригенном и карбонатном разрезах имеет свои особенности.

Песчаные и алевролитовые коллекторы в терригенных разрезах, являющиеся обычно поровыми коллекторами, вы­деляются наиболее надежно по совокупности диаграммы ПС, кривой ГК и кавернограммы - про наибольшему отклоне­нию кривой ПС от линии глин, по минимальной гамма-активности на кривой ГК, по сужению диаметра скважины на кавернограмме в результате образования глинистой корки при бурении скважины. Для выделения малопористых плот­ных песчано-алевролитовых коллекторов проводят дополни­тельно электрическое микрозондирование, нейтронный гам­ма-каротаж, гамма-гамма-каротаж и акустический каротаж.

Для распознавания глинистых коллекторов используют следующий комплекс: амплитуды кривой ПС, удельные сопротивления, кавернограммы, кривые микрокаротажа, гам­ма-каротажную кривую.

Коллекторы в карбонатном разрезе (известняки и доло­миты) имеют различные структуры пустотного пространства. Распознавание отдельных типов по геологическим и геофи­зическим материалам весьма сложно.

Петрофизические свойства микрокавернового (“норово­го”) карбонатного коллектора близки к таким же свойствам гранулярных песчаных коллекторов. Выделение коллекторов в карбонатном разрезе в этом случае заключается в расч­ленении разреза теми же методами на плотные и пустотные породы и в выделении среди последних высокопористых разностей. При тонком переслаивании плотных и пористых разностей наиболее надежные результаты могут быть полу­чены по данным микрозондирования.

Для выделения в карбонатном разрезе трещиноватых и кавернозных пород разработаны специальные комплексы геофизических исследований и их интерпретации:

электрометрия, нейтронный каротаж, результаты анализа керна; проведение повторных измерений в скважине при смене растворов (метод двух растворов); совместное исполь­зование данных радиометрии и акустического каротажа и др.

Учитывая отмеченные особенности подходов к расчлене­нию терригенного и карбонатного разрезов, для каждого конкретного объекта (продуктивного горизонта, толщи) в зависимости от литологического состава пород, слагающих разрез, толщин отдельных слоев и пластов выбирается опре­деленный комплекс геофизических исследований скважин, включающий методы, наиболее информативные в данных конкретных условиях.

На рис. 24 приведены типичные кривые различных гео­физических методов, позволяющих выделять интервалы пород-коллекторов в разрезах скважин. Эти методы следу­ющие:

1 метод сопротивлений — по расхождению кривых кажущихся сопротивлений рк зондов малого и большого раз­мера;

2 метод микрозондов (МЗ) — по положительному при­ращению микропотенциал-зонда (МПЗ) над микроградиент-зондом (МГЗ): ;

3 - метод потенциалов собственной поляризации (СП) - по отрицательной аномалии ΔUсп;

4 метод естественного гамма-излучения (ГМ) — по низ­ким значениям Iу;

5 — гамма-гамма метод (ГГМ) — по повышенным значе­ниям 1у;

6 метод изотопов — по повышенным значениям Iу в сравнении с фоновыми значениями после закачки изотопов;

7-11 -нейтронные и нейтронные гамма-методы (ННМ и НГМ) — по понижающимся значениям 1п ,; 1п н; 1п (карбонатные коллекторы); при высокой минерализации вод по хлору коллекторы могут выделяться повышенными значе­ниями Ih и пониженными значениями 1п , измеренными зон­дами разного размера (L и Ln);

12 метод ядерного магнитного резонанса (ЯМР) — по повышенному значению IЯМР;

13 ультразвуковой метод — по достаточно высоким значениям интервального времени пробега волны Δτп;

14 метод кавернометрии — по увеличению толщины глинистой корки (сужению диаметра ствола скважины dc по сравнению с номинальным ее диаметром dH);

15 метод продолжительности проходки — по низким значениям τпр.

 

 

Рис. 24. Характеристика коллекторов по данным различных геофизических методов исследования скважин (по В.Н. Дахнову).

 

Песчаники характеризуются:

1. широким диапазоном изменения рк; для газоносных и нефтеносных пород обычно характерны высокие значения рк, для водонасыщенных — низкие;

2. отрицательными аномалиями ΔUсп, уменьшающимися при увеличении глинистости песчаного пласта;

3. более высокими, чем у глин, значениями ркз, при этом Ркмпз > Ркмгз (кривые расходятся);

4. низкими значениями Iу, повышающимися против глинис­тых полимиктовых и глауконитовых песчаников;

5. понижением значений Ivv и Δτп с уменьшением пористости и возрастанием их с увеличением глинистости;

6. широким диапазоном изменений Iп v , и Iп в зависимости от пористости, степени цементации и характера насыщенно­сти;

7. уменьшением dc из-за образования глинистой корки.

Определение литологического состава пород-неколлекто­ров по промыслово-геофизическим данным основывается на следующих геофизических признаках.

Глиныобычно характеризуются:

1. низкими значениями рк, которые увеличиваются при по­вышении плотности и карбонатности глин;

2. положительными аномалиями ΔUп (кривая занимает крайнее правое положение);

3. совмещением значений ркМГЗ и ркМПЗ, примерно равных сопротивлению промывочной жидкости (глинистого раствора Pр): Ркмгз = Ркмпз = Pр (кривые почти сливаются);

4. высокими значениями Iу;

5. высокими значениями Ivv, снижающимися в более плотных разностях;

6. низкими показаниями In v и In;

7. максимальными значениями Δτп;

8. увеличением dc по сравнению с dH;

9. ростом геотермического градиента Г.

Глинистые сланцы характеризуются более высокими, чем у глин, значениями рк, In v и In , больiими показаниями ΔUсп, более низкими значениями Ivv и Δτп ; незначительным увели­чением dc илиноминальным его значением.

Карбонатные породы(известняки и доломиты) характери­зуются:

1. широким диапазоном изменения рк в зависимости от типа и значения пористости, характера насыщения; нефтегазонасыщенные породы имеют более высокие значения рк, чем водонасыщенные;

2. отрицательными амплитудами ΔUсп, уменьшающимися при увеличении глинистости;

3. низкими значениями Iу, возрастающими с увеличением глинистости;

4. низкими значениями Iуу , возрастающими с увеличением пористости пород;

5. широким диапазоном изменения In у и In в зависимости от пористости, плотности пород и характера их насыщения;

6. низкими значениями Δτп, увеличивающимися при повы­шении глинистости;

7. зависимостью величины dc от структуры пустотного про­странства: в плотных разностях dc = dH, в карстовых полос­тях dc » dH, в карбонатных породах с трещинным пустот­ным пространством возможно dc > dH, в породах с межзер­новой пористостью dc < dH;

8. небольшими значениями Г.

Гидрохимические осадки (ангидриты, соли)характеризу­ются очень высокими значениями рк; незначительными амп­литудами ΔUсп; минимальными значениями Iу и низкими Iуу; максимальными показаниями In у и In; низкими значениями Δτп; номинальными значениями dc; очень низкими значения­ми Г.

На рис. 25 приведены характерные кривые геофизических методов для различных типов пород.

Рис. 25. Кривые радиометрии скважин в осадочных поводах (по В.Н.Дахнову):

1 — глины; 2 — аюгиллиты; 3 — пески; песчаники; 4 — плотные; 5 — рыхлые; известняки: 6 - чистые; 7 - глинистые; 8 - высокопористые; 9 -гипсы; 10 - ангидриты; 11 - галит; 12 - калийныесоли; 13 - борсодержащие соли

 

От полноты комплекса геофизических исследований, правильного его выбора, для конкретных условий, освещенности разреза керном зависит степень детальности расчленения разреза скважины.

Еще раз следует отметить, что в терригенном разрезе петрофизические свойства пород обусловлены глинистостью и поэтому здесь наиболее информативны показания рк, Ucn и Iу. Карбонатные породы в основном различаются по типу пустотного пространства и его величине, поэтому в карбо­натном разрезе более информативны нейтронные и акусти­ческие методы и метод сопротивлений.

Результаты расчленения разреза скважины представляются в виде литологической колонки, на которой приводятся кри­вые основного комплекса геофизических исследований.

Выделение коллекторов и неколлекторов позволяет опре­делить в каждой скважине один из важных параметров, не­обходимый как для подсчета запасов, так и для эффективной организации разработки залежей и эксплуатации отдельных скважин, — толщины пластов и горизонта.

При изучении разрезов скважин выделяются: 1) общая толщина горизонта (пласта) — расстояние от кровли до по­дошвы, определяемое в стратиграфических границах; 2) эф­фективная толщина, равная общей толщине за вычетом тол­щины прослоев неколлекторов, выделенных в разрезе гори­зонта; 3) нефтенасыщенная (газонасыщенная) толщина, рав­ная суммарной толщине прослоев нефтегазонасыщенных коллекторов. В чисто нефтяной зоне залежи (во внутреннем контуре нефтеносности) эффективная толщина равна нефте-насыщенной. В водонефтяной (водогазовой) зоне пласта неф­тенасыщенная (газонасыщенная) толщина определяется как часть эффективной в интервале от его кровли до поверхнос­ти ВНК или ГВК.

Значения эффективной и нефтегазонасыщенной толщин в пределах площади залежи различаются, иногда довольно су­щественно. Для отображения изменения названных толщин строятся карты в изолиниях, называемые картами изопахит (изопахиты - линии равных значений толщины). Метод по­строения карты изопахит такой же, как и структурной кар­ты, — линейная интерполяция. В пределах внутреннего кон­тура нефтегазоносное значения конфигурации изопахит эффективной и продуктивной толщин совпадают. От внут­реннего контура к внешнему идет закономерное уменьшение нефтегазонасыщенной толщины. Внешний контур нефтега­зоносное одновременно является линией нулевых значений эффективной нефтегазонасыщенной толщины, т.е. фактиче­ски границей залежи.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.