Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Роль генотипа в формировании способности к рассудочной деятельности



При тестировании элементарной рассудочной деятельности были получены многочисленные свидетельства вариативности (изменчиво­сти) уровня выполнения этого теста среди животных одного вида. Л. В. Крушинский и его сотрудники в 60-70-е годы XX века проана­лизировали способность животных многих видов к экстраполяции на­правления движения стимула, т.е. их умение оперировать закономер­ностями перемещения предметов (см. гл. 4).

Сравнительные исследования поведения животных разных видов позволили сделать заключение, что уровень рассудочной деятельнос­ти тем выше, чем сложнее мозг животного (см. гл. 8). Однако для изу­чения физиолого-генетических основ этого феномена было необхо­димо исследовать животных одного вида, и наиболее подходящими объектами такой работы казались лабораторные грызуны, хорошо изу­ченные как в физиологических, так и в генетических аспектах. Но именно у грызунов способность к экстраполяции оказалась развита слабо, в частности у лабораторных крыс и мышей она обнаружива­лась далеко не всегда.

Экспериментальные данные о существовании генетических раз­личий в способности животных к решению элементарных логических задач были получены в лаборатории Л. В. Крушинского при сравнении способности к экстраполяции у диких и доместицированных (одо­машненных) форм лисицы и серой крысы. Дикие «красные» лисицы отличались высоким уровнем правильных решений теста на экстрапо­ляцию. В то же время одомашненные черно-серебристые лисицы, в том числе и мутантные по цвету шерсти, разводившиеся в неволе в течение многих десятков поколений, выполняли этот тест с досто­верно более низкими показателями, чем их дикие сородичи.

Рисунок 9.1А показывает успешность решения данного теста ли­сицами обеих групп. Доля правильных решений (на рисунке — высота столбиков) была выше у диких (1) лисиц, по сравнению с одомаш­ненными (2—5). Очень высокий уровень правильных решений теста на экстраполяцию (даже при его первом предъявлении) наблюдали у прирученных диких крыс-пасюков, хотя эти показатели быстро сни­жались уже в течение первого опытного дня (т.е. при 6—8 предъявлениях теста). Лабораторные же крысы (линии Крушинского—Молодкиной

/KM), Wag, August и их гибриды между собой) оказались вообще не­способными к решению задачи на экстраполяцию. Доля правильных решений у них не превышала 50%-го уровня, т.е. они выбирали направ­ление обхода ширмы чисто случайно, не руководствуясь информацией о направлении перемещения корма. В то же время гибриды первого по­коления от скрещивания диких крыс с лабораторными обнаружили высокий уровень решения этой задачи, достоверно превышающий слу­чайный уровень (Крушинский, 1986). Эти соотношения можно видеть на рис. 9.1 Б, где 1 и 2 — показатели диких крыс и их гибридов, 3-6 — соответственно крысы линий KM, WAG, Aug и гибридов KM x Aug.

И лабораторные крысы, и черно-серебристые лисицы, хотя и ве­дут свое происхождение от соответствующих диких форм, в течение многих поколений разведения в неволе не испытывали действия ес­тественного отбора. Иными словами, в популяциях таких животных не было «выживания наиболее приспособленных», и соответственно доля животных, способных к быстрым адекватным реакциям на меняющи­еся внешние условия, оказалась уменьшенной. Отражением этого мож­но считать снижение доли правильных решений теста на элементар­ную рассудочную деятельность.

Л. В. Крушинский (1986) предполагал, что в случае прекращения действия естественного отбора при размножении животных в неволе разрушаются сложные полигенные системы (или «коадаптированные комплексы»), которые в естественных условиях обеспечивают при­способление животных (через механизмы поведения) к изменяющимся и часто неблагоприятным внешним условиям.

Среди лабораторных мышей также были обнаружены генетичес­кие группы, у которых доля правильных решений задачи достоверно превышала случайную. Это были мыши с робертсоновской транслока­цией (слиянием) хромосом Rb(8,l7)Jfern. В начале этого исследования способность к экстраполяции была проанализирована у значитель­ного числа мышей с различными нарушениями кариотипа, в част­ности с робертсоновскими транслокациями разных хромосом. У жи­вотных с большинством таких мутаций доля правильных решений теста также не отличалась от 50%-го случайного уровня. В то же время мыши, у которых было слияние хромосом 8 и 17 (транслокации Rb(8,17)llem и Rb(8,17)6Sic; оно возникло совершенно независимо и найденно в разных лабораториях), оказались способными к экстра­поляции. Рис. 9.1В показывает, что мыши со слиянием хромосом 8 и 17 (3-5) достоверно решали задачу на экстраполяцию, тогда как мыши с нормальным кариотипом (1,2) и со слиянием других хромо­сом (6) задачи не решали.

Мыши с этой хромосомной мутацией, в течение более 20 лет разво­дившиеся в нашей лаборатории, устойчиво показывали отличный от случайного уровень решения задачи на экстраполяцию. Позднее мы ис­следовали этот вопрос с использованием уникальной генетической

 

Рис. 9.1. Успешность решения теста на экстраполяцию животными раз­ных генетических групп (пояснения в тексте).

А — решение теста лисицами; Б — крысами; В — мышами. Высота столбца соответствует доле правильных решений задачи при первом (ближний ряд) и многократных (дальний ряд) предъявлениях задачи.

модели — мышей 4 инбредных линий, которые попарно различались либо по генотипу (СВА и C57BL/6J), либо по наличию или отсут­ствию этой транслокации (Полетаева, 1998).

р Эксперименты с животными этих линий показали, что усиле­ние способности к решению теста на экстраполяцию и другие особенности поведения, а также особенности обмена катехола-минов у этих мышей связаны именно с наличием в их кариотипе С данной робертсоновской транслокации.

Возможно, что причиной, лежащей в основе этих изменений в функции ЦНС при данной хромосомной перестройке, могут быть из­менения в пространственном расположении генетического материала в интерфазном ядре, возникшие как следствие слияния хромосом.

Данные по различиям способности к экстраполяции у животных, отличающихся друг от друга генетически, естественно, не стоят особ­няком, а являются частью огромной «базы данных», созданной к сегод­няшнему дню учеными, работающими в области генетики поведения.

Генетические исследования затрагивают практически все формы поведения, в том числе и способность к обучению, и способность к формированию пространственных представлений. Для того чтобы вкрат­це познакомиться с этим материалом, необходимо сначала дать крат­кий очерк основных методологических особенностей данного направ­ления. Далее приводятся примеры использования генетических мето­дов для изучения когнитивных способностей животных, а также краткое описание исследований генетических закономерностей пси­хических способностей человека.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.