Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

АКУСТИЧЕСКОЕ ПОЛЕ ПРЕОБРАЗОВАТЕЛЯ



Акустическое поле излучения преобразователя определяется давлением, которое действует на элементарный приемник, расположенный в произвольной точке пространства.

Акустическое поле излучения - приема определяется сигналом приемного преобразователя, возникающим при отражении сигнала возбуждающего преобразователя от элементарного рассеивателя, расположенного произвольной точке пространства.

Такое поле имеет две зоны:

1. ближняя зона (зона Френеля) толщиной ,в пределах которой отсутствует расхождение лучей и пучок лучей в сечении повторяет сечение пластины.

2. Дальняя зона (зона Фраунгофера)- это зона при , в пределах которой наблюдается расхождение лучей. Она характеризуется тем, что интенсивность акустической волны при удалении от преобразователя уменьшается обратно пропорционально расстоянию r.

 

ОСНОВНЫЕ МЕТОДЫ АКУСТИЧЕСКОГО КОНТРОЛЯ

ОБЩИЕ СВЕДЕНИЯ

Акустическими методами называют методы контроля, основанные на изменении упругих колебаний и волн в контролируемом объекте.

Согласно ГОСТ 23829-79 акустические методы делят на две большие группы: Активные - использующие излучение и прием акустических колебаний; Пассивные - основанные только на приеме колебаний. К активным методам относят методы, основанные на прохождении и отражении УЗК.

 

Классификация акустических методов контроля

Методы прохождения используют излучающие и приемные преобразователи, расположенные по разные или по одну сторону контролируемого изделия. Применяют импульсное или (реже) непрерывное излучение и анализируют сигнал, прошедший через контролируемый объект.

К методам прохождения относят:

· амплитудный теневой метод, основанный на регистрации уменьшения амплитуды волны, прошедшей через контролируемый объект, вследствие наличия в нем дефекта;

· временной теневой метод, базирующийся на регистрации запаздывания импульса, вызванного увеличением его пути в изделии при огибании дефекта;

· велосиметрический метод, основанный на регистрации изменения скорости распространения дисперсионных мод упругих волн в зоне дефекта и применяемый при одностороннем и двустороннем доступе к контролируемому объекту. В этом методе обычно используют преобразователи с сухим точечным контактом.

В методах отражения используют как один, так и два преобразователя; применяют импульсное излучение. К этой подгруппе относят следующие методы дефектоскопии:

Эхо-метод основан на регистрации эхо-сигналов от дефекта. На экране индикатора обычно наблюдают посланный (зондирующий) импульс, импуль, отраженный от противоположной поверхности (дна) изделия и эхо-сигнал от дефекта.

Эхо-зеркальный метод основан на анализе сигналов, испытавших зеркальное отражение от донной поверхности изделия и дефекта. Также предусматривается расположение излучателя и приемника в разных плоскостях, таким образом чтобы принимать зеркальное отражение от дефекта. Еще один вариант, предусматривает расположение преобразователей по разные стороны изделия.

Дельта-метод основан на приеме преобразователем для продольных волн, расположенным над дефектом, рассеянных на дефекте волн, излученных преобразователем для поперечных волн.

Дифракционно-временной метод, в котором излучатели, приемники излучают и принимают либо продольные, либо поперечные волны, причем могут излучать и принимать разные типы волн. Преобразователи располагают так, чтобы получать максимумы эхо-сигналов волн, дифрагированных на концах дефекта. Измеряют амплитуды и время прихода сигналов от верхнего и нижнего концов дефекта.

Реверберационный метод использует влияние дефекта на время затухания многократно отраженных ультразвуковых импульсов в контролируемом объекте. Например, при контроле клееной конструкции с наружным металлическим слоем и внутренним полимерным слоем дефект соединения препятствует передаче энергии во внутренний слой, что увеличивает время затухания многократных эхо-сигналов во внешнем слое.

В комбинированных методах используют принципы как прохождения, так и отражения акустических волн:

Зеркально-теневой метод основан на измерении амплитуды донного сигнала. По технике выполнения (фиксирует эхо-сигнал) его относят к методам отражения, а по физической сущности контроля (измеряют ослабление сигнала дважды прошедшего изделие в зоне дефекта) он близок к теневому методу.

Эхо-теневой метод основан на анализе как прошедших, так и отраженных волн.

В эхо-сквозном методе фиксируют сквозной сигнал, сигнал, испытавший двукратное отражение в изделии, а в случае появления полупрозрачного дефекта - также сигналы, соответствующие отражениям волн от дефекта и испытавших также отражение от верхней и нижней поверхностей изделия.

Методы собственных частот основаны на измерении этих частот (или спектров) колебаний контролируемых объектов. Собственные частоты измеряют при возбуждении в изделиях как вынужденных, так и свободных колебаний. Свободные колебания обычно возбуждают механическим ударом, вынужденные - воздействием гармонической силы меняющейся частоты.

Различают интегральные и локальные методы. В интегральных методах анализируют собственные частоты изделия, колеблющегося как единое целое, в локальных - колебания отдельных его участков.

Локальный методс использованием вынужденных колебаний известен как ультразвуковой резонансный метод. Его применяют в основном для измерения толщин. В стенке изделия с помощью преобразователей возбуждают упругие волны непрерывно меняющейся частоты. Фиксируют частоты, на которых отмечаются резонансы системы преобразователь - изделие. По резонансным частотам определяют толщину стенки изделия и наличие в нем дефектов. Дефекты, параллельные поверхности, меняют измеряемую толщину, а расположенные под углом к поверхности - приводят к исчезновению резонансов.

Методы собственных частот, использующие свободные колебания,также делят на интегральные и локальные.

В интегральном методе в изделии ударом молотка возбуждают свободнозатухающие колебания. Эти колебания принимают микрофоном,усиливают усилителем и фильтруют полосовым фильтром, пропускающим только сигналы с частотами, соответствующими выбранной моде колебаний. Признаком дефекта служит изменение частоты.

В локальном методе возбуждаемый генератором вибратор создает периодические удары по контролируемому изделию. Электрические сигналы с приемного микрофона через усилитель поступают на спектроанализатор. Выделенный последним спектр принятого сигнала обрабатывается решающим устройством, результат обработки появляется на индикаторе. Кроме микрофонов, применяют пьезоприемники. Дефекты регистрируют по изменению спектра принятого импульсного сигнала.

Акустико-топографический метод имеет признаки интегрального и локального методов. Он основан на возбуждении в изделии интенсивных изгибных колебаний непрерывно меняющейся частоты и регистрации распределения амплитуд колебаний с помощью наносимого на поверхность порошка. Упругие колебания возбуждают преобразователем, прижимаемым к сухому изделию. Преобразователь питают от мощного генератора непрерывно меняющейся частоты. Если собственная частота отделенной дефектом зоны попадает в диапазон возбуждаемых частот, колебания этой зоны усиливаются, покрывающий ее порошок смещается и концентрируется по границам дефектов, делая их видимыми.

Импедансные методыиспользуют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. В импедансных методах используют изгибные и продольные волны.

При использовании изгибных волн преобразователь стержневого типа содержит соединенный с генератором излучающий и приемный пьезозлементы. Через сухой точечный контакт преобразователь возбуждает в изделии гармонические изгибные колебания. В зоне дефекта соединения модульмеханического импеданса уменьшается и меняется его аргумент. Эти изменения регистрируются электронной аппаратурой. В импульсном варианте этого метода в системе преобразователь - изделие возбуждают импульсы свободно затухающих колебаний. Признаком дефекта служит уменьшение амплитуды и несущей частоты этих колебаний.

Кроме совмещенного преобразователя применяют раздельно-совмещенные преобразователи, имеющие в общем корпусе раздельные излучающий и приемный вибраторы. Эти преобразователи работают в импульсном режиме. При работе совмещенными преобразователями используют частоты до 8 кГц, раздельно-совмещенными - импульсы с несущими частотами 15-35 кГц.

Метод контактного импеданса, применяемый для контроля твердости, основан на оценке механического импеданса зоны контакта алмазного индентора стержневого преобразователя, прижимаемого к контролируемому объекту с постоянной силой. Уменьшение твердости увеличивает площадь контактной зоны, вызывая рост ее упругого механического импеданса, что отмечается по увеличению собственной частоты продольного колеблющегося преобразователя, однозначно связанной с измеряемой твердостью.

Пассивные акустические методыоснованы на анализе упругих колебаний волн, возникающих в самом контролируемом объекте.

Наиболее характерным пассивным методом является акустико-эмиссионный метод. Явление акустической эмиссии состоит в том, что упругие волны излучаются самим материалом в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин под влиянием внешней нагрузки, аллотропические превращения при нагреве или охлаждении, движение скоплений дислокаций - наиболее характерные источники акустической эмиссии.

Пассивными акустическими методами являются вибрационю-диагностический и шумодиагностический. При первом анализируют параметры вибраций какой-либо отдельной детали или узла с помощью приемников контактного типа, при втором - изучают спектр шумов работающего механизма, с помощью микрофонных приемников.

По частотному признаку акустические методы делят на низкочастотные и высокочастотные. К первым относят колебания в звуковом и низкочастотном (до нескольких десятков кГц), ультразвуковом диапазонах частот. Ко вторым - колебания в высокочастотном ультразвуковом диапазоне частот: обычно от нескольких сот кГц до 20 МГц.

Области применения методов.Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод. Около 90% объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения размеров изделий. Измеряют время прихода донного сигнала и, зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия неизвестна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а по ним определяют физико-механические свойства материалов.

Зеркально-теневой метод используют вместо или в дополнение к эхо-методу для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя. Дефекты, ориентированные перпендикулярно поверхности, по которой перемещают преобразователь, дают очень слабый рассеянный сигнал и плохо выявляются эхо-методом. По чувствительности этот метод обычно в 10-100 раз хуже эхо-метода.

Эхо-зеркальный метод также применяют для выявления дефектов, ориентированных перпендикулярно поверхности ввода. При этом он обеспечивает более высокую чувствительность к таким дефектам, но требует, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности. Эхо-зеркальный метод используют для выявления вертикальных трещин и непроваров при контроле сварных соединений. Дефекты некоторых видов сварки, например, непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны, но такие дефекты хорошо выявляются эхо-зеркальным методом.

Дельта и дифракционно-временной методы также используют для получения дополнительной информации о дефектах при контроле сварных соединений. С помощью этого метода довольно точно определяют положение дефекта вдоль сварного шва, что важно для его автоматической регистрации.

Эхо-теневой метод применяют также при контроле сварных соединений. Например, при автоматическом контроле сварных соединений искатели располагают по обе стороны от шва и принимают как отраженные, так и прошедшие сигналы. Последние используют для контроля качества акустического контакта и обнаружения дефектов, ориентированных таким образом, что эхо-сигналы от них очень слабы.

Теневой и эхо-сквозной методы используют только при двустороннем доступе к изделию, для автоматического контроля изделий простой формы, например, листов в иммерсионной ванне. Чувствительность теневого метода к дефектам в 10-100 раз меньше, чем эхо-метода в связи с большим влиянием помех. Применение эхо-сквозного метода в значительной мере устраняет этот недостаток. Теневой метод применяют также для контроля изделий с большим уровнем структурной реверберации, т.е. шумов, связанных с отражением ультразвука от неоднородностей, крупных зерен, дефектоскопии многослойных конструкций и изделий из слоистых пластиков. Сквозной сигнал попадает на приемник раньше, чем структурные реверберации, что позволяет его зарегистрировать на фоне шумов. При контроле тонких изделий с очень высоким уровнем структурных шумов более высокую чувствительность обеспечивает временной теневой метод. Теневой и временной методы позволяют обнаруживать крупные дефекты в материалах, где контроль другими акустическими методами затруднен или невозможен: крупнозернистой аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче. Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большим затуханием и рассеянием акустических волн.

Локальный метод вынужденных колебаний применяют для измерения малых трещин при одностороннем доступе. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок тонких труб лучший результат дает иммерсионный резонансный толщиномер.

Интегральный метод вынужденных колебаний применяют для определения модулей упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой формы, вырезанных из материала изделия, т.е. при разрушающих испытаниях. В последнее время этот метод используют также для неразрушающего контроля небольших изделий: абразивных кругов, турбинных лопаток. Появление дефектов или изменение свойств материалов определяют по изменению спектра резонансных частот. Свойства, связанные с затуханием ультразвука (изменение структуры, появление мелких трещин), определяют по изменению добротности колебательной системы.

Интегральный метод свободных колебаний используют для проверки бандажей вагонных колес или стеклянной посуды "по чистоте звона" с субъективной оценкой результатов на слух. Метод с применением электронной аппаратуры и объективной количественной оценкой результатов применяют для контроля физико-механических свойств абразивных кругов, керамики и др. объектов.

Реверберационный, импедансный, велосимметрический, акустико-топографический методы и локальный метод свободных колебаний используют в основном для контроля многослойных конструкций. Реверберационным методом обнаруживают, в основном, нарушения соединений металлических слоев с металлическими или неметаллическими силовыми элементами или наполнителями. Импедансным методом выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых в различных сочетаниях. Велосимметрическим методом и локальным методом свободных колебаний контролируют, в основном, изделия из полимерных композиционных материалов. Акустико-топографический метод применяют для обнаружения дефектов преимущественно в металлических многослойных конструкциях.

Вибрационно-диагностический и шумо-диагностический методы служат для диагностики работающих механизмов. Метод акустической эмиссии применяют в качестве средства исследования материалов, конструкций, контроля изделий и диагностики во время эксплуатации. Его важными преимуществами перед другими методами контроля является то, что он реагирует только на развивающиеся, действительно опасные дефекты, а также возможность проверки больших участков или даже всего изделия без сканирования его преобразователем. Основной его недостаток как средства контроля - трудность выделения сигналов от развивающихся дефектов на фоне помех.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.