Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Смысл суммы и разности



Смысл натурального числа, полученного в результате измерения величины

Выясняя смысл натурального числа как меры величины, все рассуждения будем вести на примере одной величины - длины отрезка. Уточним сначала понятие «отрезок состоит из отрезков».

Определение. Считают, что отрезок х состоит из отрезков х1, х2,..., хп, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы.

В этом же случае говорят, что отрезок х разбит на отрезки х1, х2,..., хп и пишут х = х1 Å х2 Å…Å хп

Пусть задан отрезок х, его длину обозначим X. Выберем из множества отрезков некоторый отрезок е, назовем его единичным отрезком, а длину обозначим буквой Е.

Определение. Если отрезок х состоит из а отрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины Х данного отрезка при единице длины Е.

Пишут: Х = а × Е или а = тЕ (Х).

Например, отрезок х (рис. 3) состоит из 6 отрезков, равных отрезку е.

Если длину единичного отрезка обозначить буквой Е, а длину отрезка х - буквой X, то можно написать, что Х = 6Е или 6 = mЕ (Х).

Из данного определения получаем, что натуральное число как результат измерения длины отрезка (или как мера длины отрезка) показывает, из скольких единичных отрезков состоит отрезок, длина ко­торого измеряется.При выбранной единице длины Е это число единственное.

В связи с таким подходом к натуральному числу сделаем два замечания:

- При переходе к другой единице длины численное значение длины заданного отрезка изменяется, хотя сам отрезок остается неизменным. Так, если в качестве единицы длины выбрать длину отрезка е (рис. 1), то мера длины отрезка будет равна числу 3. Записать это можно так: Х = 3×Е1 или mЕ1 (Х) = 3.

- Если отрезок х состоит из а отрезков, равных е, а отрезок у - из b отрезков, равных е, то а = b тогда и только тогда, когда отрезки х и у равны.

- Аналогично можно истолковать смысл натурального числа и в связи с измерением других величин. Так, в записи 3 см2 число 3 означает, что фигура F состоит из трех единичных квадратов с площадью, равной квадратному сантиметру.

Смысл суммы и разности

Выясним теперь, какой смысл имеют сумма и разность натуральных чисел, полученных в результате измерения величин.

Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей.

Доказательство. Обозначим длины отрезков х, у и z соответственно буквами X, Y и Z. Пусть m(Y) = а, m(Z) = b при единице длины Е. Тогда отрезок у разбивается на а частей, каждаяиз которых равна отрезку длины Е, отрезок z разбивается на b таких частей. А потому весь отрезок х разбивается на а + b таких частей. Значит, m(Х) = а + b = m(Y)+m(Z).

Из этой теоремы следует, что сумму натуральных чисел а и b можно рассматривать как меру длины отрезка х, состоящего из отрезков у и z мерами длин которых являются числа а и b.

а + b = mЕ (Y) + mЕ (Z) = mЕ (Y + Z).

Аналогичный смысл имеет сумма натуральных чисел, полученных в результате измерения других положительных скалярных величин.

Покажем, как используется данный подход к обоснованию выбора действия сложения при решении текстовых задач: «В саду собрали 7 кг смородины и 3 кг малины. Сколько всего килограммов ягод собрали?»

В задаче две величины - масса смородины и масса малины. Известны их численные значения. Требуется найти численное значение массы, которая получится, если данные массы сложить. Для этого, согласно рассмотренной теореме, надо сложить численные значения массы смородины и массы малины, т.е. получить выражение 7+3. Это математическая модель данной задачи. Вычислив значение выражения 7 + 3 получим ответ на вопрос задачи.

Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков х и у выражаются натуральными числами, то мера длины отрезка z равна разности мер длин отрезков х и у.

Доказательство этой теоремы проводится аналогично доказательству предыдущей.

Из этой теоремы следует, что разность натуральных чисел а и b можно рассматривать как меру длины такого отрезка z , что z Å у = х, если мера длины отрезка х равна а, мера длины отрезка у равна b.

а - в = тЕ (Y) - тЕ (Z) = тЕ (Y - Z).

Аналогичный смысл имеет разность натуральных чисел, полученных в результате измерения других положительных скалярных величин.

Выясним, как используется данный подход к обоснованию выбора действия вычитания при решении текстовых задач, например, «Купили 7 кг картофеля и капусты. Сколько килограммов картофеля купили, если капусты было 3 кг?».

В задаче рассматривается масса овощей, известно ее численное значение. Эта масса складывается из массы картофеля и массы ка­пусты, численное значение которой также известно. Требуется узнать численное значение массы картофеля. Так как массу картофеля можно получить, вычитая из всей массы купленных овощей массу капусты, то численное значение массы картофеля находят действием вычитания: 7-3. Вычислив значение этого выражения, получим ответ на вопрос задачи.

При помощи сложения или вычитания решаются также текстовые задачи, в которых величины связаны отношением «больше на» или «меньше на». Например: «Купили 3 кг моркови, а картофеля на 2 кг больше. Сколько килограммов картофеля купили?». В задаче речь идет о двух величинах - массе моркови и массе карто­феля. Численное значение первой массы известно, а численное значение второй надо найти, зная, что картофеля на 2 кг больше, чем моркови.

Кг

М.

Кг

К.

?

Рис. 4

Если построить вспомогательную модель задачи (рис. 4), то можно сразу увидеть, что картофеля купили столько же, сколько моркови, и еще 2 кг, т.е. масса картофеля складывается из двух масс (3 кг и 2 кг), и чтобы найти ее численное значение, надо сложить численные значения масс - слагаемых. Получаем выражение 3+2, значение которого и будет ответом на вопрос задачи.

 

4. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин

Рассматривая смысл суммы и разности натуральных чисел - мер величин, мы установили, что сложение таких чисел связано со сложением величин, а вычитание - с вычитанием величин. И естественно возникает вопрос: с каким действием над величинами связано умножение и деление натуральных чисел? Чтобы ответить на него, проанализируем задачу: «Купили 3 пакета муки по 2 кг в каждом. Сколько килограммов муки купили?».

В этой задаче речь идет о массе муки, которая сначала измерена пакетами, и известно численное значение этой массы при указанной единице массы. Требуется найти результат измерения той же массы муки, но уже при помощи другой единицы - килограмм при условии, что 1 пакет - это 2 кг муки. Рассуждения, связанные с поиском численного значения массы муки при единице - килограмм, можно представить в таком виде: 3 пак. = 3·пак. = 3 · (2 кг) = 3 · 2 · кг = (3 · 2) кг.

Видим, что ответ на вопрос задачи находится умножением и что оно оказалось связанным с переходом (в процессе измерения массы) от одной единицы массы к другой, более мелкой.

Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е состоит из b отрезков, длина которых равна Е1, то мера длины отрезка х при единице длины Е1, равна а× b.

Доказательство. По условию отрезок х состоит из от отрезков равных е, а отрезок е - из b отрезков, равных е1 (рис. 5, а). Обозначим длину отрезка х буквой X, длину отрезка е - буквой Е, длину отрезка е1 - буквой Е1. Так как по условию , а , то Х = а × Е, Е = b × Е1 . Нетрудно видеть, что частей отрезка х, равных е1, будет а × b, так как . Это означает, что мера длины отрезка х при единице длины Е1 равна а× b. Можно записать, что Х = а×Е= а×(в×Е1) = (а× b) × Е1.

)

Из этой теоремы следует, что умножение натуральных чисел связано с переходом в процессе измерения к новой единице длины: если натуральное

число а - мера длины отрезка х при единице длины Е, натуральное число b - мера длины Е при единице длины Е1, то произведение а× b - это мера длины отрезка х при единице длины Е1:а× в = тЕ (Х) × тЕ1 (Е) = тЕ1 (Х).

Аналогичный смысл имеет произведение натуральных чисел, полученных в результате измерения других положительных скалярных величин. И поэтому при построении вспомогательных моделей текстовых задач с величинами можно использовать отрезки (что, впрочем, мы делали и раньше). Кроме того, условимся, что в тех случаях, когда это не ведет к путанице, отрезок х и его длину Х не различать. Проиллюстрируем это на конкретном примере.

Задача 1. Объяснить смысл произведения 4×3, если 4 и 3 - числа, полученные в результате измерения величин.

Решение. Пусть 4 = mЕ (Х), 3 = mЕ1 (Е), где Х - измеряемая величина, Е - первоначальная единица величины, а Е1 - новая единица величины. Тогда, согласно доказанной теореме, 4×3 = mЕ1 (X), т.е. 4×3 – это численное значение длины Х при единице длины Е1. Рассмотрим рисунок 5, б). Пусть Х - длина отрезка. Если Е- первоначальная единица длины, то = 4× Е. Если Е1 - новая единица длины, такая, что Е = 3Е1, то Х = 4 ×Е= 4 × (3×Е1) = (4× 3) Е1.

Задача 2. Обосновать выбор действия при решении задачи. «В одной коробке 6 ручек. Сколько ручек в трех таких коробках?» решение. В задаче речь идет о количестве ручек, которое сначала измерено коробками и известно численное значение этой величины при указанной единице. Требуется найти численное значение этой же величины при новой единице - ручка, причем известно, что коробка - это 6 ручек. Тогда 3 кор. = 3× кор. = 3× (6 руч.) = 3 × (6× руч.) = (3× 6) руч. Таким образом, задача решается при помощи действия умножения, поскольку в ней при измерении осуществляется переход от одной еди­ницы величины (коробка) к другой - ручка.

Чтобы установить смысл частного натуральных чисел, полученных в результате измерения величин, рассмотрим задачу: «6 кг муки надо разложить в пакеты, по 2 кг в каждый. Сколько получится пакетов?»

В задаче рассматривается масса муки, которая сначала измерена при помощи единицы массы - килограмм, и известно численное значение этой массы при указанной единице массы. Требуется найти результат измерения этой же массы, но уже при помощи другой единицы - пакета, причем известно, что 1 пакет - это 2 кг.

Рассуждения, связанные с поиском численного значения массы муки при новой единице - пакет, можно представить в таком виде: 6кг = 6 × кг = 6× ( пак.) = (6 × ) пак. = (6:2) пак.

Видим, что ответ на вопрос задачи находится делением и что оно связано с переходом (в процессе измерения) от одной единицы массы к другой, более крупной.

Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е1 состоит из b отрезков длины Е, то мера длины отрезка х при единице длины Е1 равна а: b.

Данная теорема доказывается аналогично рассмотренной выше. Из этой теоремы следует, что деление натуральных чисел связано с переходом в процессе измерения к новой единице длины: если натуральное число а - мера длины отрезка х при единице длины Е, а натуральное число b - мера новой единицы длины Е1 при единице длины Е, то частное а: b - это мера длины отрезка х при единице длины Е1: а : b = mЕ (Х) : mЕ11) = mЕ1 (Х).

Аналогичный смысл имеет частное натуральных чисел, полученных в результате измерения других положительных скалярных величин.

Заметим, что такая трактовка частного возможна только для деления по содержанию.

Задача 3. Обосновать выбор действия при решении задачи.

«Из 12 м ткани сшили платья, расходуя на каждое по 4 м. Сколько платьев сшили?»

Решение. В задаче рассматривается длина ткани, которая измерена сначала при помощи единицы длины - метр, и известно численно значение заданной величины. Требуется найти численное значение той же длины при условии, что она измеряется новой единицей – платьем, причем известно, что платье - это 4 м, откуда метр - это платья.

Рассуждения, связанные с поиском численного значения длины при единице - платье, можно представить в таком виде: 12м = 12 × м = 12 × ( пл.) = (12 × ) × пл. = (12 : 4) пл.

Таким образом, ответ на вопрос задачи находится при помощи деления, поскольку в задаче нужно перейти от одной единицы величины (метр) к другой (платье), более крупной.

Итак, умножение и деление натуральных чисел - мер величин оказалось связанным с переходом от одной единицы величины к другой в процессе измерения одной и той же величины.

Выбор действий умножения и деления при решении текстовых задач с величинами можно обосновывать иначе, используя понятие умножения и деления величины на натуральное число.

Напомним, что умножить величину А на натуральное число х – это значит получить такую величину В того же рода, что В = х × А или В =А × х, причем

Чтобы найти численное значение величины В при единице величины Е, достаточно численное значение величины А, полученное при той же единице Е, умножить на число х, т.е. если В = А × х , то mЕ (В) = mЕ (А) × х.

Рассмотрим, например,задачу: «Купили 3 пакета муки, по 2 кг в каждом. Сколько килограммов муки купили?» Чтобы ответить на вопрос задачи, надо массу 2 кг повторить слагаемым три раза, т.е. массу 2 кг умножить на число 3. Численное значение полученной при этом величины находим, умножив численное значение массы муки в одном пакете на число 3. Произведение 2 × 3 будет математической моделью данной задачи. Вычислив его значение, будем иметь ответ на вопрос задачи.

Если В = А × х, где х - натуральное число, В и А - величины одного рода, то с помощью деления решают две задачи:

- зная А и В, находят число х (х = В: А), причем х = mЕ (В) : mЕ (А); это деление по содержанию;

- зная В и х, находят А (А = В : х), причем mЕ (А ) = mЕ (В): х; это деление на равные части.

С этих позиций выбор действия при решении задачи «6 кг муки разложили на пакеты по 2 кг в каждый. Сколько получилось пакетов?» можно обосновать так. В задаче надо узнать, сколько раз масса 2 кг укладывается в 6 кг, т.е. надо массу 6 кг разделить на массу 2 кг. В результате должно получиться число, которое находим, разделив численное значение одной величины на численное значение другой. Таким образом, получаем частное 6:2. Его значение и будет ответом на вопрос задачи.

Пользуясь описанным подходом к трактовке умножения и деления натуральных чисел, можно обосновывать выбор действия и при решении текстовых задач с отношениями «больше в» и «меньше в».

Задача 4. Обосновать выбор действия при решении задачи.

«Купили 3 кг моркови, а картофеля в 2 раза больше. Сколько килограммов картофеля купили?»

Решение. В задаче рассматриваются масса моркови и масса картофеля, причем численное значение первой массы известно, а численное значение второй надо найти, зная, что она в два раза больше первой.

Если воспользоваться вспомогательной моделью задачи (рис. 6), то можно к. сказать, что масса картофеля складывается из двух масс по 3 кг, и, следовательно, ее численное значение можно найти, умножив 3 на 2. Найдя значение выражения 3-2, получим ответ на вопрос задачи.

Кг

М.

К.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.