Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Коэффициент эффективности торможения



В приведенных ранее формулах для определения времени тор­можения и тормозного пути автомобиля не учтен ряд конструк­тивных и эксплуатационных факторов, существенно влияющих на эффективность торможения. Поэтому в действительности значе­ния времени и пути торможения могут быть на 20...60 % больше рассчитанных по этим формулам.

Для согласования результатов теоретических расчетов с экс­плуатационными данными служит коэффициент эффективно­сти торможения kэ. Он учитывает непропорциональность тор­мозных сил на колесах нагрузкам, приходящимся на колеса, а


также износ, регулировку, замасливание и загрязненность тор­мозных механизмов. Данный коэффициент показывает, во сколь­ко раз действительное замедление автомобиля меньше теорети­ческого, максимально возможного на данной дороге. Значение коэффициента эффективности торможения составляет 1,2 для легковых автомобилей и 1,4... 1,6 — для грузовых автомобилей и автобусов.

С учетом коэффициента эффективности торможения формулы для определения времени торможения и тормозного пути автомо­биля преобразуются к следующему виду:

Для случая торможения до полной остановки

 

где vни vквыражены в км/ч.

7.7. Остановочный путь и диаграмма торможения

Остановочным называется путь, проходимый автомобилем от момента, когда водитель заметил препятствие, до полной оста­новки автомобиля.

Остановочный путь больше, чем тормозной, так как он кроме тормозного пути дополнительно включает в себя путь, проходи­мый автомобилем за время реакции водителя, время срабатыва­ния тормозного привода и увеличения замедления. Остановочный путь

S0 = S д + S тор ,

где S ддополнительный путь, м, или

где t′p = 0,2... 1,5 с — время реакции водителя, зависящее от его возраста, квалификации, утомляемости и т.д.; tпp— время сраба­тывания тормозного привода от момента нажатия на тормозную педаль до начала действия тормозных механизмов, зависящее от конструкции тормозного привода и его технического состояния (составляет 0,2 с для гидравлического, 0,6 с — для пневматичес­кого, 1,0 с — для автопоезда с пневмоприводом); tу = 0,2...0,5с — время увеличения замедления от нуля до максимального значе­ния; vнскорость автомобиля в начале торможения, км/ч.


Выражение для остановочного пути по­лучено при наличии допущения, что в течение времени увеличения замедления автомобиль движется равнозамедленно и замедление в этом случае составляет 0,5jзmax. Из формулы для остановочного пути следует, что он, как и тормозной путь, характеризуется квадратичной за­висимостью от скорости. При увеличении начальной скорости он существенно воз­растает (см. рис. 7.2).

Рис. 7.3. Диаграмма тор­можения автомобиля

Остановочный путь автомобиль прохо­дит за остановочное время

t0=t′p+tпр+tу+tтор.

Диаграмма торможения (рис. 7.3) представляет собой график изменения замедления и скорости автомобиля во времени при торможении. Она характеризует интенсивность торможения авто­мобиля с учетом всех составляющих остановочного времени.

Служебное торможение

Служебным называется такой режим торможения, при кото­ром тормозные силы на колесах автомобиля не достигают макси­мально возможного значения по сцеплению.

Служебное торможение является наиболее распространенным режимом торможения. При эксплуатации автомобилей оно состав­ляет 95...97 % общего числа торможений. Максимальное значение замедления при служебном торможении не превышает 4 м/с2. Тор­можение с таким замедлением вызывает неприятные ощущения и дискомфорт у пассажиров и применяется в исключительных случа­ях. Обычно в условиях эксплуатации используется плавное служеб­ное торможение, при котором замедление составляет 1,5... 2,5 м/с2.

При эксплуатации автомобилей применяются различные спо­собы служебного торможения. Оно может осуществляться двига­телем, с отсоединенным двигателем, с неотсоединенным двига­телем (комбинированное торможение), тормозом-замедлителем (вспомогательным тормозом) и с периодическим прекращением действия тормозной системы.

Торможение двигателем.При торможении этим способом не используются тормозные механизмы колес автомобиля. В этом слу­чае тормозом служит двигатель, который не отсоединяется от трансмиссии, но работает на режиме холостого хода (с умень­шенной подачей горючей смеси) или на компрессорном режиме (без подачи в цилиндры горючей смеси). Ведущие колеса прину­дительно вращают коленчатый вал двигателя. В результате в двига-


теле за счет трения возникает сила сопротивления, которая за­медляет движение автомобиля.

Торможение двигателем применяют в горных условиях, при движении на длинных затяжных спусках и в тех случаях, когда требуется небольшое замедление. Оно обеспечивает плавное тор­можение, сохранность колесных тормозных механизмов и устой­чивость автомобиля против заноса (благодаря равномерному рас­пределению тормозных сил по колесам). Однако торможение дви­гателем на режиме холостого хода очень вредно для окружающей среды, загрязняемой отработавшими газами, с которыми на этом режиме выбрасывается большое количество оксидов углерода.

Торможение с отсоединенным двигателем.Торможение осуще­ствляется только тормозными механизмами колес автомобиля без использования двигателя. Двигатель отсоединяют от трансмиссии путем выключения сцепления или установкой нейтральной пере­дачи в коробке передач. Торможение с отсоединенным двигате­лем — основной способ служебного торможения. Оно чаще всего используется при эксплуатации автомобилей, так как обеспечи­вает необходимое замедление. Однако торможение с отсоединен­ным двигателем уменьшает устойчивость автомобиля на дорогах с малым коэффициентом сцепления (скользких, обледенелых и др.).

Торможение с неотсоединенным двигателем.Это комбиниро­ванный способ торможения, который осуществляется тормозны­ми механизмами колес совместно с двигателем автомобиля. Пе­ред приведением в действие тормозных механизмов уменьшают подачу горючей смеси в цилиндры двигателя. Угловая скорость коленчатого вала двигателя снижается, чему препятствуют веду­щие колеса, принудительно вращающие коленчатый вал через трансмиссию. В результате происходит торможение двигателем, после чего приводятся в действие тормозные механизмы колес. Торможение с неотсоединенным двигателем увеличивает срок службы тормозных механизмов, которые при длительных тормо­жениях с отсоединенным двигателем сильно нагреваются и выхо­дят из строя. Кроме того, оно повышает устойчивость автомобиля против заноса вследствие более равномерного распределения тор­мозных сил по колесам автомобиля.

Торможение с периодическим прекращением действия тормоз­ной системы.Этот способ торможения обеспечивает наибольший эффект.

При таком способе торможения колеса автомобиля необходи­мо удерживать на грани юза, не допуская их скольжения. Колесо, катящееся и не скользящее, обеспечивает большую тормозную силу, а при движении колеса юзом его сцепление с дорогой резко уменьшается.

При скольжении колеса в месте контакта шины с дорогой ре­зина протектора нагревается и размягчается. При многократном


последовательном нажатии на тормозную педаль и затем частич­ном отпускании ее с дорогой соприкасаются новые (ненагретые) части протектора шины, вследствие чего сохраняется максималь­ное сцепление колеса с дорогой. В начале скольжения колес авто­мобиля усилие, приложенное к тормозной педали, уменьшают. В этом случае колеса перекатываются, и в соприкосновение с до­рогой входят новые части протектора шин, которые не участвова­ли в торможении и в меньшей степени нагреты и размягчены.

Торможение с периодическим прекращением действия тормоз­ной системы рекомендуется выполнять только водителям высо­кой квалификации, так как для удержания колес автомобиля на грани юза без их скольжения необходимы большой опыт и внима­ние.

Торможение тормозом-замедлителем.Торможение осуществля­ют с помощью вспомогательного тормозного механизма, обычно действующего на вал трансмиссии автомобиля (рис. 7.4, б).Этот способ обеспечивает плавное торможение с замедлением 1... 2 м/с2 в течение длительного времени.

Торможение тормозом-замедлителем целесообразно в горных условиях, где при частых торможениях колесные тормозные ме­ханизмы быстро нагреваются и выходят из строя. Так, напри­мер, торможение автомобиля в горных условиях производится в 8—10 раз чаще, чем в обычных условиях на загородном шоссе.

При торможении тормозом-замедлителем повышается безопас­ность движения и уменьшается износ тормозных механизмов, шин и двигателя. Тормозами-замедлителями обычно оборудуют грузо­вые автомобили и автобусы, предназначенные для особых усло­вий эксплуатации (горных и т.п.).

Рис. 7.4. Схемы моторного (а) и электродинамического (б) тормозов-замедлителей: 1 — заслонка; 2 — ротор; 3 — электромагнит


7.9. Распределение тормозных сил по колесам автомобиля

При торможении на горизонтальной дороге (см. рис. 7.1) дей­ствие силы инерции Ри,приложенной в центре тяжести, которое характеризуется плечом, равным hц,приводит к перераспределе­нию нагрузки на колеса. При этом нагрузка на передние колеса увеличивается, а на задние уменьшается. Следовательно, нормаль­ные реакции Rz1и Rz2,воспринимаемые колесами при торможе­нии, значительно отличаются от нагрузок G1и G2,приходящихся на колеса в статическом состоянии.

Изменение нагрузок на колеса при торможении оценивается коэффициентами изменения реакций, которые для передних и задних колес соответственно равны

; .

Для определения значений mр1и mр2найдем сначала нормаль­ные реакции Rz1и Rz2при торможении. С этой целью составим уравнение моментов относительно центра тяжести, пренебрегая силой сопротивления воздуха, так как при торможении скорость быстро падает и влияние силы незначительно:

Rz1l1 – Rz2l2 (Rx1+Rx2)hц=0.

При экстренном торможении на горизонтальной дороге

Rx1+Rx2 = Rz1φx + Rz2φx = Gφx.

Тогда уравнение моментов примет вид

Rz1l1 – Rz2l2 = Gφx hц.

Спроецируем все силы на вертикальную плоскость и получим

Rz1 + Rz2 = G.

Решим совместно два последних уравнения и найдем нормаль­ные реакции дороги, действующие на передние и задние колеса при торможении:

Используя полученные выражения для Rz1и R z2и учитывая, что

находим коэффициенты изменения реакций При торможении для передних и задних колес соответственно:


Как показали исследования, при торможении предельные зна-чения коэффициентов изменения реакций составляют 1,5... 2,0 для передних колес и 0,5...0,7 — для задних.

Наибольшая интенсивность торможения автомобиля достига­ется при полном использовании сцепления всеми его колесами, что возможно только на дороге с оптимальным коэффициентом сцепления φопт = 0,40...0,45.

На дорогах с другими значениями коэффициента сцепления полное использование сцепления невозможно без блокировки колес одного из мостов. Так, при торможении на дорогах с коэф­фициентом сцепления, большим оптимального (φх > φопт), первы­ми будут блокироваться (доводиться до юза) задние колеса, что может вызвать занос и нарушение устойчивости автомобиля. При торможении на дорогах с коэффициентом сцепления, меньшим оптимального (φх < φопт),в первую очередь будут блокироваться передние колеса, что может привести к нарушению управляемо­сти автомобиля.

Тормозные системы автомобилей часто выполнены так, что между тормозными силами передних и задних колес существует неизменное соотношение. Оно оценивается коэффициентом рас­пределения тормозных сил по колесам

где Ртор1 = Rz1φxсуммарная тормозная сила передних колес; Ртор = Gφx — тормозная сила автомобиля.

Распределение тормозных сил по колесам автомобиля считает­ся оптимальным, если передние и задние колеса могут быть одно­временно заблокированы (доведены до юза). В этом случае коэф­фициент распределения тормозных сил

Для того чтобы торможение автомобиля в любых дорожных условиях происходило с максимальным замедлением, необходи­мо, чтобы тормозные силы на его колесах всегда были пропорцио­нальны нагрузкам или нормальным реакциям, приходящимся на колеса:

Такая пропорциональность между тормозными силами и на­грузками на колеса может быть достигнута различными конструк­тивными мерами, например с помощью регуляторов тормозных


сил, которые изменяют значение тормозной силы на колесах мо­ста в зависимости от нагрузки, приходящейся на мост.

Торможение автопоезда

Рассмотрим торможение прицепного автопоезда (рис. 7.5) на горизонтальной дороге, пренебрегая силой сопротивления возду­ха (Рв = 0), так как ее влияние при небольшой скорости незначи­тельно.

При торможении замедление будет равно:

для автомобиля-тягача

для прицепа

где Gaи Gпр— вес с полной нагрузкой соответственно автомоби­ля-тягача и прицепа; таи тпр— полная масса автомобиля-тягача и прицепа; Рсмаксимальная сила тяги на крюке.

С учетом суммарной тормозной силы, которая равна:

для автомобиля-тягача

Pтор=Rx1+ Rx2;

для прицепа

Pтор пр=Rx3+ Rx4,

можно записать

где и — удельная тормозная сила автомобиля-тягача

Рис. 7.5. Силы, действующие на автопоезд при торможении

и прицепа.


Для случая использования сцепного устройства автомобиля с прицепом, не имеющего зазоров, можно считать, что при тормо­жении значения замедления автомобиля-тягача и прицепа равны (jз=jз пр).

Приравняв правые части выражений для замедлений автомо­биля-тягача и прицепа, получим

где – приведенный вес автопоезда с полной на-

грузкой.

Из выражения для силы тяги на крюке следует, что при тормо­жении автопоезда характер взаимодействия автомобиля-тягача и прицепа зависит от соотношения между их удельными тормозны­ми силами.

При равенстве удельных тормозных сил автомобиля-тягача и прицепа сила тяги на крюке Рс = 0 и их торможение происходит одновременно. Однако достичь этого в обычных тормозных систе­мах с пневматическим приводом не удается.

Если удельная тормозная сила автомобиля-тягача меньше, чем у прицепа, то сила Рс > 0 и прицеп тормозится с опережением, растягивает автопоезд и исключает его складывание, однако ухуд­шается эффективность торможения автопоезда. При этом прицеп может сползать вбок и тянуть за собой автопоезд.

Если удельная тормозная сила автомобиля-тягача больше, чем у прицепа, то сила Рс < 0 и прицеп тормозится с запаздыванием, накатывается на автомобиль-тягач, что может вызвать складыва­ние автопоезда и нарушение его устойчивости. Это и наблюдается у современных автопоездов с пневматическим тормозным приво­дом.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.