Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

МАСШТАБИРОВАНИЕ ЧЕПУХИ



 

Научные исследования невозможны без практики, без технической подготовки и упорства. Но этого мало. Аутисты – не говоря уже о некоторых научных сотрудниках и многих чиновниках – нередко демонстрируют прекрасную техническую осведомленность, но им откровенно не хватает творческого подхода и воображения. В наши дни достаточно сходить в кинотеатр, чтобы убедиться, что одного только упорства и технических достижений без воображения и креативности недостаточно. Бесконечные сцены, в которых одни нарисованные чудовища сражаются с другими нарисованными чудовищами, сами по себе, конечно, выглядят внушительно, но такому сюжету, как правило, не хватает энергии, чтобы полностью захватить многих зрителей. По крайней мере я часто засыпаю в кинозале, несмотря на все световые и звуковые эффекты.

Для меня самые захватывающие фильмы – те, что обращаются к серьезным вопросам и реальным идеям, но передают их через простые примеры, которые каждый человек может понять и оценить. Фильм «Касабланка» рассказывает о патриотизме и любви, о войне и верности, но хотя Рик и говорит Ильзе, что «не нужно много ума, чтобы понять: проблемы трех маленьких людей в этом безумном мире ничего не стоят», именно эти трое повинны в том, что фильм меня захватил (плюс, конечно, работа Петера Лорре и Клода Рейнса).

В науке тоже правильные вопросы часто ставит тот, кто удерживает в уме одновременно и глобальное, и частное. Существуют великие проблемы, решить которые мечтает каждый, и существуют маленькие вопросы, которые кажутся несложными. Поставить перед собой крупную проблему, как правило, недостаточно, потому что к реальному продвижению обычно приводит решение небольших вопросов. В одной песчинке действительно можно увидеть целый мир.

Важная способность любого творческого человека–это умение правильно поставить вопрос. Творческие люди стремятся распознать перспективный, интересный и, самое главное, реальный путь к истине и в конце концов верно сформулировать вопросы. В науке лучший подход – это сосредоточенность на небольшой проблеме и при этом учет глобальных вопросов. Иногда крохотная проблема или противоречие становятся ключом к большому открытию.

Революционные идеи Дарвина отчасти выросли из повседневных наблюдений за птицами и растениями. Вычисление прецессии перигелия орбиты Меркурия не было результатом ошибки измерений, а указывало на ограниченность действия законов физики Ньютона. Этот результат стал одним из свидетельств в пользу теории гравитации Эйнштейна. Несовпадения, которые кому‑то покажутся слишком мелкими и незначительными, на самом деле могут показать путь к новым концепциям, но лишь тем, кто сумеет взглянуть на проблему под правильным углом.

Эйнштейн поначалу вообще не собирался заниматься гравитацией. Он пытался разобраться в следствиях недавно разработанной теории электромагнетизма. Ученый сосредоточился на странных или даже противоречивых аспектах симметрии, как все тогда думали, пространства и времени, а закончил тем, что революционным образом изменил наше мировоззрение. Эйнштейн считал, что во всем должен быть смысл; ему хватило настойчивости, чтобы догадаться в конце концов, в чем этот смысл может заключаться.

Или взглянем на современные научные исследования. Вопрос о том, почему некоторые взаимодействия не могут происходить согласно суперсимметричным теориям, кому‑то может показаться пустяком. В 1980–е гг. моего коллегу Дэвида Каплана засмеяли, когда он попытался в Европе поговорить о подобных проблемах. Но оказалось, что этот вопрос – богатый источник новых данных как о суперсимметрии, так и о ее нарушениях; на его базе возникли новые гипотезы, которые сегодня готовятся проверять экспериментаторы на БАКе.

Я твердо верю в то, что Вселенная непротиворечива и что любое отклонение подразумевает какую‑то интересную, но пока не открытую особенность. После того как я заявила об этом на одной презентации, какой‑то блогер написал, что я идеалистка. На самом же деле для многих ученых убежденность в непротиворечивости Вселенной – одна из основных, вероятно, движущих сил при выборе тем и вопросов для изучения.

Кроме того, многие известные мне творческие люди обладают способностью удерживать в сознании одновременно значительное число вопросов и идей. Любой может заглянуть в Google и выяснить что‑то об интересующем его предмете, но, если вы не умеете компоновать факты и идеи нестандартным образом, вам вряд ли удастся обнаружить что‑нибудь новое. Именно при столкновении разнонаправленных идей нередко рождаются новые научные гипотезы и произведения искусства.

Многие предпочитают работать линейно. Но это означает, что на первом же непреодолимом препятствии, при первых же сомнениях в верности выбранного пути путешествие заканчивается. Подобно многим писателям и художникам, ученые продвигаются вперед скачкообразно. Как правило, это нелинейный процесс. Некоторые детали головоломки удается понять, другие приходится временно отодвигать в сторону и оставлять на потом. Мало кому удается до конца разобраться в теории после одного–единственно‑ го прочтения. Приходится считать, что когда‑нибудь мы до конца во всем разберемся, что мы можем себе позволить пока пропустить кое–какие неясности, а потом, добравшись до конца, к ним вернуться. Приходится погружаться в тему с головой, чтобы продолжать работу над ней – и над понятными кусками, и над непонятными.

Известно, что Томас Эдисон однажды заметил: «Гений – это один процент вдохновения и 99 процентов пота». А по словам Луи Пастера, «в области исследований счастье улыбается только натруженному уму». Именно поэтому увлеченные исследователи иногда находят ответ на свои вопросы. Но случается, что ответы эти находятся совсем не там, где предполагалось. Александр Флеминг не искал лекарство от инфекционных болезней. Он просто заметил, что грибок уничтожает колонии бактерий Staphylococci, изучением которых он в то время занимался, и распознал потенциальное терапевтическое значение этого факта, хотя понадобилось еще десять лет и труд множества других людей, прежде чем пенициллин стал мощным лекарством, по–своему изменившим мир.

Нередко при определенной широте базы рассматриваемых вопросов возникают и побочные достижения. Работая над суперсимметрией, мы с Раманом Сандрамом получили в конце концов свернутое дополнительное измерение, позволяющее решить проблему иерархии. Потом мы еще раз внимательно посмотрели на уравнения, перенесли их на более широкий контекст и обнаружили, что бесконечное свернутое пространственное измерение может существовать, не порождая никаких противоречий с известными наблюдаемыми фактами или законами природы. Мы занимались физикой элементарных частиц – совершенно другой темой. Но одновременно мы старались удерживать в сознании и общую картину мира. Мы не забывали про глобальные вопросы о природе пространства даже тогда, когда наше внимание было поглощено частными моментами, такими как иерархия масштабов масс в Стандартной модели.

Важно, что ни Раман, ни я не были специалистами по теории относительности, так что к своим исследованиям мы подошли без всякой предвзятости. Ни нам и никому другому в голову бы не пришло, что теория гравитации Эйнштейна допускает существование невидимого бесконечного измерения, пока уравнения не показали нам, что это возможно. Мы упрямо разбирались в следствиях наших уравнений, не зная, что в кругах ученых, занятых теорией относительности, бесконечное дополнительное измерение считалось невозможным.

Тем не менее мы далеко не сразу щерились в том, что правы. Ни Раман, ни я не собирались слепо хвататься за радикальную идею. Выходить за пределы привычных пространства и времени имело смысл только после того, как мы и многие другие физики убедились, что традиционные идеи здесь не годятся. Хотя дополнительное измерение – достаточно свежая гипотеза, теория относительности Эйнштейна продолжает действовать. Поэтому мы могли воспользоваться готовыми уравнениями и математическим аппаратом, чтобы понять, как поведет себя наша гипотетическая вселенная.

Позже другие использовали результаты этого исследования и приняли модель с дополнительными измерениями за отправной пункт в собственных поисках новых физических идей, которые, возможно, будут применимы в какой‑нибудь вселенной без дополнительных измерений. Подойдя к этой проблеме буквально, физики увидели в ней возможности, которых прежде никто не замечал. Такой подход помог ученым выйти за рамки трехмерности.

Всякому, кто вторгается на новые территории, приходится мириться с массой неопределенностей – от них невозможно избавиться, пока проблема не будет решена полностью. Даже если вы начинаете с прочного фундамента существующих знаний, то, изучая новые явления, вы рано или поздно столкнетесь с неизвестностью и неопределенностью, хотя, конечно, рискуете вы при этом куда меньше, чем канатоходец. Не только космонавты, но и ученые, и художники дерзко стремятся «туда, где никто еще не бывал». Но их дерзость не слепа и не случайна, и они не пренебрегают достижениями предшественников, даже если речь идет о совершенно новых идеях и безумных экспериментах, которые, кажется, и реализовать‑то невозможно. Исследователи стремятся быть готовыми ко всему. Именно для этого нужны правила, уравнения и представления о непротиворечивости. Это страховка, которая защищает нас во время путешествия по неизвестным землям.

По словам моего коллеги Марка Камионковски, «хорошо быть амбициозным и смотреть в будущее». Но главное все‑таки – ставить реалистичные цели. Один студент, достигший больших успехов в изучении бизнес–менеджмента, заметил, что базой недавнего успешного экономического роста, раздувшегося затем в экономический пузырь, в значительной мере была именно креативность. Но, заметил он также, недостаток сдерживающих факторов привел к тому, что пузырь лопнул.

В качестве примера противоречивых намерений, которые внушают человеку уверенность и осторожность, можно привести даже самые важные открытия прошлого. Научный журналист Гэри Таубс однажды сказал мне, что ученые – одновременно самые уверенные и самые неуверенные люди на свете. Именно это противоречие гонит их все время вперед: с одной стороны, каждый из них уверен в том, что движется вперед, а с другой – самым жестким образом проверяет любые свои выводы. Творческий человек должен верить, что он может добиться многого, и при этом постоянно помнить о тех, у которых ничего не получилось.

Выдвигая смелые, подчас даже авантюрные идеи, ученые иногда очень неохотно представляют их миру. Известнейшие ученые Исаак Ньютон и Чарльз Дарвин много лет не решались поделиться с окружающими своими революционными идеями. Исследования Дарвина растянулись на десятилетия, и книга «Происхождение видов» вышла лишь после громадного количества наблюдений. Ньютоновы «Начала» представили теорию всемирного тяготения, на разработку которой у автора ушло больше десяти лет. Ньютон не публиковал трактат, пока не получил достаточных доказательств того, что тела произвольной геометрической формы (не только точечные) тоже притягиваются с силой, обратно пропорциональной квадрату расстояния. Именно в процессе доказательства этого закона Ньютон разработал методы дифференциального и интегрального исчисления.

 

 

Иногда требуется заново сформулировать проблему, чтобы увидеть ее в новом свете и заново определить границы, а затем найти решение там, где на первый взгляд никакого решения и быть не может. Для успеха начатой работы нередко очень важны упорство и вера – не в бога, а в то, что решение все‑таки существует. Истинные ученые – и вообще творческие люди – никогда не останавливаются, оказавшись в тупике. Если проблема не решается одним способом, они пробуют решить ее иначе. Если впереди непреодолимое препятствие, они роют тоннель, ищут другое направление или поднимаются в воздух и составляют карту местности. Именно здесь вступает в игру воображение. Чтобы продолжать, мы должны верить в то, что ответ реально существует, а мир изначально логичен, и эту логику мы в конце концов обязательно обнаружим. Посмотрев на проблему под верным углом, можно заметить связи, которые в противном случае обязательно пропустишь.

В качестве иллюстрации можно привести известную задачу, в которой требуется, не отрывая карандаша от бумаги, соединить девять точек четырьмя отрезками прямой (рис. 81). Если держаться в пределах образованного точками квадрата, решения у задачи не существует, но ведь никто не задавал вам такого ограничения! Стоит выйти за пределы квадрата, и решение появляется (рис. 82). В этот момент вам, возможно, придет в голову, что проблему можно переформулировать еще несколькими способами. Если точки будут большими, можно ограничиться тремя линиями. Если сложить бумагу (или воспользоваться очень широким пером, как предложила создателю задачи одна маленькая девочка), хватит и одной линии.

 

 

Эти решения – не обман и не нарушение правил. Правда, они были бы обманом, если бы в задаче имелись дополнительные ограничения. К сожалению, система образования зачастую загоняет мышление в жесткие рамки, когда человек сам отсекает «лишние» возможности. В книге «Кварк и ягуар» (The Quark and the Jaguar) Мюррей Гелл–Манн цитирует «историю про барометр» профессора физики Вашингтонского университета Александра Каландры. Суть истории такова: преподаватель, сомневаясь в оценке, задал студенту вопрос о том, как можно измерить высоту здания при помощи барометра. Студент ответил, что можно привязать барометр к веревке и спустить с крыши на землю, а затем измерить длину веревки. Когда преподаватель возразил, что решение должно быть основано на законах физики, экзаменуемый предложил измерить время падения барометра с крыши или длину тени от барометра и от здания в заданное время дня. Студент предложил также один нефизический способ: пойти к коменданту и предложить ему барометр в обмен на информацию о высоте здания. Возможно, это были не те ответы, которые хотел услышать преподаватель. Но студент верно – и остроумно – подметил, что личные ограничения преподавателя не входят в условия задачи.

Когда в 1990–е гг. я вместе с другими физиками начала думать о дополнительных пространственных измерениях, мы не просто стали мыслить шире, мы буквально вышли за пределы знакомого трехмерного пространства. Мы размышляли о мире, в котором сама сцена, на которой мы решали свои проблемы, неожиданно оказалась больше, чем мы думали. Представив себе такой мир, мы сумели отыскать в нем потенциальные решения проблем, которые годами беспокоили специалистов по физике элементарных частиц.

Надо заметить, что научные достижения возникают не в вакууме. Они всегда опираются на идеи предшественников. Хорошие ученые прислушиваются друг к другу. Иногда для получения верного вопроса или ответа достаточно просто внимательно выслушать, понаблюдать или прочесть чью‑то статью. Мы часто сотрудничаем, привлекая в проект ученых разных специальностей; кроме того, это помогает сохранить объективность.

Каждый ученый хочет первым сделать важное открытие; тем не менее мы умеем учиться друг у друга и делиться друг с другом результатами своей работы; умеем мы и работать над одной общей темой. Иногда случайная фраза, сказанная кем‑то из коллег, становится ключом к интересной проблеме или решению. У каждого ученого, конечно, бывают свои озарения, но мы часто обмениваемся мыслями, вместе прорабатываем следствия и вносим поправки – или начинаем все сначала, если оказывается, что первоначальная идея не работает. Мы постоянно придумываем новые гипотезы, одни сохраняем про запас, другие отбрасываем.

Это наш хлеб. Именно так мы работаем, именно так продвигаемся вперед. Это не плохо. Это прогресс.

Одна из важнейших задач, которые я выполняю при работе с аспирантами, заключается в том, чтобы внимательно следить, не мелькнет ли в их рассуждениях какая‑нибудь свежая перспективная идея, даже если сами они пока не могут как следует ее сформулировать; стоит прислушиваться также к критике моих построений. Возможно, такой взаимный обмен – лучший способ научить творчеству (или, по крайней мере, поддержать его).

Конкуренция тоже играет важную роль в научном процессе – впрочем, как и в большинстве других занятий. При обсуждении креативности художник Джефф Кунс рассказал нам, что в юности его сестра занималась живописью и в какой‑то момент он вдруг понял, что способен рисовать лучше. Один молодой продюсер объяснил, что конкуренция стимулирует его и его коллег и заставляет заимствовать у других лучшие идеи и методы, а значит, и развивать собственные. Известный повар Дэвид Чан выразил аналогичную мысль чуть более откровенно. При посещении нового ресторана у него иногда возникает мысль: «Это здорово! Почему я об этом не подумал?»

Ньютон тянул с публикацией до завершения исследований. Но при этом он, вполне вероятно, внимательно следил за своим конкурентом Робертом Гуком, который тоже знал об обратной пропорциональности квадрату расстояния, но математического аппарата для доказательства этого закона у него не было. Тем не менее работа Гука, вероятно, подтолкнула Ньютона к публикации результатов. Дарвин тоже принял окончательное решение о публикации, узнав о том, что над аналогичными эволюционными идеями работает некий Альфред Рассел Уоллес и, если он еще немного потянет с публикацией, слава первооткрывателя достанется конкуренту. И Дарвин, и Ньютон хотели полностью прояснить для себя свои теории, прежде чем публиковать их, и работали над ними до полной уверенности – или по крайней мере пока их не стали догонять конкуренты.

Вселенная то и дело дает нам понять, что она умнее нас. Уравнения или наблюдения подсказывают новые идеи, которые еще недавно никому не приходили в голову и для подтверждения которых в будущем потребуются оригинальные, креативные эксперименты. Без неопровержимых экспериментальных свидетельств ни один ученый не придумал бы квантовую механику; я подозреваю, что точную структуру ДНК и мириады явлений, в сумме образующих жизнь, практически невозможно было бы угадать, если бы мы не столкнулись лицом к лицу с «подсказками».

Научные исследования – органичный процесс. Мы вовсе не обязательно знаем, к чему идем, но эксперименты и теории служат нам на этом пути ценными проводниками. Подготовка и мастерство, сосредоточенность и упорство, умение задавать нужные вопросы и доверять собственному воображению – вот качества, которые помогают нам в поиске истины. Полезны также широта взглядов, общение с коллегами, желание превзойти предшественников или коллег и вера в то, что ответы существуют. Какими бы мотивами ни руководствовались ученые, каких бы навыков не потребовали от них новые теории, исследования будут продолжаться и вглубь вещества, и вовне. Мы будем с нетерпением ждать информации об открытии новых законов жизни, которых еще немало скрыто во Вселенной.

 

 

ЗАКЛЮЧЕНИЕ

 

Когда я впервые увидела сообщения немецких СМИ о моих исследованиях и о моей книге «Закрученные пассажи», меня удивило постоянное присутствие в текстах словосочетания «край Вселенной». Оказалось, что эта фраза, на первый взгляд случайная, объясняется очень просто: так переводит мою фамилию на немецкий язык компьютер[64].

Тем не менее мы действительно стоим в определенном смысле на краю Вселенной – как на малых масштабах, так и на больших. Ученые экспериментально исследовали расстояния, начиная с 10_17см, что соответствует масштабу слабого взаимодействия, до 1030см (размер Вселенной). Мы не можем заранее сказать, на какие масштабы в будущем придется очередной сдвиг парадигмы, но многие ученые сейчас внимательно следят за масштабом слабого взаимодействия, экспериментальное исследование которого начинают с помощью БАКа и других инструментов поиска скрытой массы. В то же время продолжается теоретическая работа по исследованию масштабов энергий – от энергии слабого взаимодействия до энергии Планка и далее к еще более крупным масштабам. Таким образом мы пытаемся заполнить пробелы в наших представлениях о мире. Наивно думать, что мы все уже знаем. Впереди нас почти наверняка ждут новые открытия.

Современная наука во временной перспективе – всего лишь миг по историческим меркам. Но успехи технологий и математики позволили нам за 300 с небольшим лет – начиная с XVII в. – пройти громадный путь и приблизиться к пониманию окружающего мира.

В этой книге рассказывается о том, как специалисты по физике высоких энергий и космологи определяют направление исследований и как сочетание теории и эксперимента помогает пролить свет на некоторые глубокие и фундаментальные вопросы. Теория Большого взрыва описывает нынешнее расширение Вселенной, но оставляет открытыми вопросы о природе темной энергии и скрытой массы. Стандартная модель предсказывает взаимодействия элементарных частиц, но оставляет нерешенным вопрос о том, почему эти частицы обладают именно такими свойствами. Может быть, скрытая масса и бозон Хиггса уже совсем рядом, а может быть, вот–вот будут обнаружены новые симметрии пространства–времени и новые пространственные измерения. Не исключено, что нам повезет и мы сможем ответить на эти вопросы в самом ближайшем будущем. Или не в ближайшем, если нужные частицы окажутся слишком тяжелыми или слабо взаимодействующими. Есть только один способ узнать: нужно поставить вопрос и заняться поисками ответа.

Я привела также рассуждения о некоторых идеях, экспериментально проверить которые чрезвычайно трудно. Они, возможно, когда‑нибудь обретут связь с реальностью, но гарантий здесь быть не может: эти идеи вполне могут остаться в рамках философских или даже религиозных концепций. Наука не сможет доказать, что множественных вселенных–или Бога, вообще говоря – не существует, но и подтвердить их существование она вряд ли сможет. Тем не менее некоторые аспекты мультивселенной – к примеру те, при помощи которых можно объяснить иерархию – имеют проверяемые следствия. Найти их и проверить – задача ученых.

Важное место в книге занимают также принципиальные понятия, связанные с научным мышлением, такие как масштаб, неопределенность, творчество и рациональные критические рассуждения. Мы считаем, что наука движется вперед и что сложность явления может выявиться даже раньше, чем будет получено его исчерпывающее объяснение. Вообще, ответы на наши вопросы могут оказаться сложными, но это не значит, что надо отказаться от веры в разум.

Познание природы, жизни и Вселенной ставит перед человеком чрезвычайно сложные задачи. Все мы хотели бы лучше понимать, кто мы такие, откуда пришли и куда идем – хотели бы сосредоточиться на чем‑то более крупном, чем мы сами, и более значительном, чем последние новинки электроники или моды. Несложно понять, почему некоторые обращаются за объяснениями к религии. Если бы не факты и не их интерпретация, помогающая вскрыть неожиданные связи, мы никогда не пришли бы к современной научной картине мира. Наши представления о мире двигают те, кто умеет думать научно. Наша задача ‑– понять как можно больше, а наш инструмент–любопытство, не связанное догмами.

Грань между допустимым сомнением и гордыней ученого некоторым кажется спорной, но в итоге научное критическое мышление – единственный надежный способ получить ответы на вопросы, связанные с устройством Вселенной. Крайние антиинтел‑ лектуальные течения, существующие в некоторых современных религиозных движениях, идут вразрез с традиционным наследием христианства, не говоря уже о прогрессе и науке; к счастью, эти движения представляют далеко не все религиозные и интеллектуальные перспективы. Многие способы мышления–даже религиозные –допускают вопросы к существующей парадигме и эволюцию идей. Для каждого из нас прогресс – это отказ от неверных идей и развитие на базе верных.

На одной из недавних лекций Брюс Альберте, бывший президент Национальной академии наук США и нынешний главный редактор журнала Science, подчеркнул потребность современной науки в творческом подходе, рациональности, открытости и толерантности, изначально присущих ей. Джавахарлал Неру, первый премьер–министр Индии, назвал такое сочетание качеств «характером ученого». Научный образ мышления необходим в современном мире, он помогает разобраться с множеством сложнейших вопросов – социальных, практических и политических. Я хотела бы завершить книгу некоторыми размышлениями о значении науки и научного мышления.

Некоторые сложные проблемы сегодняшнего дня, скорее всего, можно было бы разрешить при помощи сочетания технологий, информации о больших популяциях и грубой вычислительной силы. Но для серьезного продвижения во многих отраслях – как научных, так и прочих – требуются всего лишь интенсивные размышления небольших групп увлеченных людей, долгое время занятых поисками ответов на сложнейшие вопросы. В этой книге речь идет в основном о природе и ценности фундаментальной науки; нельзя не признать, что чистые исследования нередко – вместе с общим прогрессом науки – приводили к технологическим прорывам, полностью менявшим нашу жизнь. Фундаментальная наука не только учит нас рассуждать о сложнейших проблемах, она также позволяет сегодня создать инструменты, которые в сочетании с научным мышлением завтра помогут найти решение новых проблем.

Вопрос сегодня в том, как в этом контексте найти подход к по–настоящему серьезным проблемам мироздания. Как, используя новые технические возможности, выйти за пределы краткосрочных целей? В мире технологий тоже не обойтись без изобретательности и новых идей. Компания, выпускающая модный гаджет, может быть очень успешной; очень легко увлечься бесконечной погоней за новинками и вниманием публики. Но это отвлекает от реальных и очень важных проблем, которые мы хотели бы решить при помощи новых технологий. iPad – это здорово, но олицетворяемый iPad стиль жизни вряд ли способствует разрешению главных проблем современного мира.

Кевин Келли, один из основателей журнала Wired, сказал мне на одной из конференций, посвященных технологиям и прогрессу: «Технологии – величайшая сила во Вселенной». Если это действительно так, то ответственность за величайшую во Вселенной силу ложится на науку, поскольку без фундаментальной науки не было бы и технической революции. Электрон был открыт без всякой практической цели, но электроника кардинально изменила лицо нашего мира. Электричество поначалу тоже рассматривалось как чисто интеллектуальная игрушка, а сегодня Земля опутана целой сетью проводов и кабелей. Квантовая механика – «эзотерическая» теория атома – позволила ученым из Лаборатории Белла придумать транзистор, ставший основой очередной технической революции. При этом никто из пионеров исследования атома не поверил бы, что их работы получат какое бы то ни было практическое применение, не говоря уже о компьютерах и информационной революции. Но без фундаментальных научных знаний и научного мышления проникновение в природу реальности, позволившее все это осуществить, было бы невозможно.

Никакие вычислительные мощности и никакие социальные сети не помогли бы Эйнштейну разработать теорию относительности быстрее, чем он это сделал в действительности. В квантовой механике ученым тоже, вероятно, не удалось бы разобраться быстрее. Я не отрицаю, разумеется, что после появления новой идеи или новой интерпретации какого‑то явления техника ускоряет продвижение вперед. А решение некоторых проблем попросту невозможно без просеивания и сортировки больших объемов информации. Но главное – это идея. Проникновение в природу реальности, которого позволяет добиться наука, приводит в конечном итоге к прорывам, которые, в свою очередь, непредсказуемым образом изменяют нас самих и общество. Человечество жизненно заинтересовано в том, чтобы научная деятельность продолжалась.

Сегодня уже ясно, что техника – основа человеческой цивилизации. Это правда в том смысле, что большинство нововведений не обходится без технических новинок. Но я бы добавила, что технологии – основа в том смысле, что сама по себе она не является ни истоком, ни целью; скорее, это средство достижения цели, средство связи и объединения. Нам решать, для чего мы хотим ее использовать. А источником необходимых озарений может стать любая форма творческого мышления.

Помимо всего прочего, технологии делают каждого из нас центром собственной вселенной, в чем можно наглядно убедиться, к примеру, на картографическом сервисе MapQuest или метафорически в любой социальной сети. Но проблемы нашего мира гораздо более обширны и глобальны. Технологии могут помочь в их решении, но гораздо полезнее здесь ясное творческое мышление – мышление того рода, которое мы видим в лучших наушных работах.

В прошлом внимание США к науке и технологиям – вместе с признанием того факта, что нужно принимать долгосрочные программы и придерживаться их – оказалось успешной стратегией и позволило нам удержаться на переднем крае новых разработок и идей. Сегодня нам, похоже, грозит опасность утратить ценности, которые прежде так замечательно работали нам на благо. Необходимо вернуться к проверенным принципам – ведь мы хотим не просто добиваться краткосрочных успехов, мы хотим представлять себе, каких усилий потребует движение вперед и какие преимущества даст в долгосрочной перспективе.

Рациональный подход к окружающему миру–это прекрасное средство ответить на серьезнейшие современные вызовы. Брюс Альберте в своей лекции сказал также, что научное мышление позволяет вооружить человека для борьбы с пустыми разглагольствованиями, упрощенными до предела теленовостями и абсолютно субъективными ток–шоу. Мы не хотим, чтобы люди отказывались от научного метода познания мира – ведь без него очень трудно сформировать осмысленное мнение о множестве сложных систем, с которыми сегодня приходится сталкиваться обществу (среди них финансовая система, окружающая среда, оценка рисков и здравоохранение).

Одним из ключевых элементов продвижения вперед и решения задач – и научных, и любых других – всегда было и всегда будет представление о масштабе. Классификация наблюдаемых фактов и представлений по масштабу очень помогла нам в познании законов природы и вообще окружающего мира, и не важно, что именно выступает в качестве единиц объектов – физические явления, группы населения или временные рамки. О масштабировании необходимо помнить не только ученым, но и политологам, экономистам и политическим лидерам.

Фундамент истинно научного мышления образует множество различных элементов. В этой книге я попыталась передать важность рационального научного мышления и его материалистических предпосылок, а также рассказать о способах, при помощи которых научное мышление экспериментально проверяет идеи и отбрасывает их, если они не подтверждаются. Научное мышление признает, что неопределенность – не обязательно неудача. Оно надлежащим образом оценивает риски и учитывает как краткосрочные, так и долгосрочные последствия. Оно допускает творческий подход к поиску решений. Все это в комплексе может привести к успеху и продвижению вперед – как в лаборатории или офисе, так и вне их. Научный метод помогает нам расширять пределы познания, но он же может помочь каждому из нас в принятии обычных житейских решений. Обществу необходимо принять научный метод на вооружение и передать его как важный инструмент новым поколениям.

Не следует бояться задавать серьезные вопросы или рассматривать величественные концепции. Один из моих коллег, физик Мэтью Джонсон, воскликнул однажды: «Никогда прежде у нас не было такого богатейшего арсенала идей!» – и был совершенно прав. Но мы пока не знаем верных ответов и с нетерпением ждем экспериментальной проверки. Иногда ответы приходят раньше, чем рассчитывают ученые, – так микроволновое фоновое (реликтовое) излучение рассказало нам о раннем экспоненциальном расширении Вселенной. А иногда происходит наоборот – как в ситуации с БАКом.

Вероятно, скоро мы будем знать больше об устройстве и жизни Вселенной, а также о том, почему вещество обладает именно такими свойствами. Кроме того, мы надеемся больше узнать о тех неуловимых штуках, которые мы называем «темными». Наш «при‑ квел» заканчивается, так что давайте еще раз вспомним ту строку из песни The Beatles, которой сопровождалось вступление к моей предыдущей книге «Закрученные пассажи»: «Должно быть, он красив, ведь его так трудно увидеть». Может быть, новые явления и концепции очень непросто открыть, но наши труды не пропадут напрасно.

 

БЛАГОДАРНОСТИ

 

В этой книге я попыталась затронуть множество тем, и мне повезло: мне помогало множество великодушных и умных людей. Прекрасным стимулом в работе было сознание того, что даже на самом раннем этапе я могу рассчитывать на помощь острых умов. Я особенно благодарна Андреасу Махлу, Любошу Мотлу и Кормаку Маккарти, каждый из которых прочел не один черновик книги и помогал ценными советами на самых разных этапах работы. Я благодарна Кормаку за высокие стандарты, за терпение и веру в «мой проект»; Любошу – за скрупулезность и заботу; Андреасу– за мудрость, энтузиазм и постоянную поддержку.

Поправки, предложения и энтузиазм других людей также были очень важны для меня. Анна Христина Бюхманн внесла своими предложениями существенный вклад в работу, проявив нетриви‑ альность мышления, ум и доброту; Джен Сакс своей мудростью и заботой помогала мне преодолевать моменты нерешительности; Полли Шулман на самом раннем этапе помогла мне определиться с направлением; интерес и острое редакторское перо Брэда Фаркаса помогли перенести мои идеи на бумагу, а острый глаз и ошеломляющее мастерство моего британского редактора Уилла Салкина помогли улучшить некоторые ключевые главы. Я хочу также выразить благодарность Бобу Кану, Кевину Хервигу, Дилани Кахавале, Дэвиду Крону и Джиму Стоуну за вычитку текста и ценные поправки.

Я очень благодарна физикам Фабиоле Джанотти и Тициано Кампорези за знакомство с устройством БАКа и экспериментальных установок ATLAS и CMS; они знают установки как свои пять пальцев. И кто лучше Лина Эванса мог бы вычитать мое описание БАКа и его истории? Хочу также поблагодарить Дага Финк‑ бейнера, Хоуи Хабера, Джона Хата, Тома Имбо, Эми Катц, Мэтью Клебана, Альбиона Лоуренса, Джо Ликкена, Джона Мейсона, Рене Онга, Брайана Шуве, Роберта Уилсона и Фабио Цвирнера за щедрые замечания и комментарии. Я благодарна и участникам моих гарвардских семинаров для младших курсов 2010 и 2011 гг. за то, что они попытались объяснить мне, как представляют себе БАК.

Отношения религии и науки в определенном смысле были для меня новой неизведанной территорией, где советы и мудрость Оуэна Гингерича, Линды Греджерсон, Сэма Хейзелби и Дейва Тома помогли мне почувствовать себя намного увереннее. Я благодарна также тем, кто помогал мне разобраться в истории науки – Анне Блэр, Софии Талас и Тому Левенсону; с их помощью мой рассказ стал намного более точным.

Затрагивать такие темы, как риск и неопределенность, иногда рискованно (и чревато неопределенностью). Моя благодарность – Ною Фелдману, Джо Фраголе, Виктории Грей, Джо Крол‑ лу, Керту Макмаллену, Джейми Робинсу, Джинни Сук, участникам коллоквиума Гарвардской юридической школы и особенно Джонатану Винеру, которые поделились со мной своим опытом, а также Кассу Санстейну за более ранние беседы. Тема творчества также может быть опасна для неопытного автора, и я благодарна Карен Барбароссе, Полу Грэму, Лайе Халлоран, Гэри Лаудеру, Лиз Лерман, Петеру Мейзу и Элизабет Стреб за то, что они поделились со мной своими взглядами. Особое спасибо Скотту Дерриксону за беседы, которые легли в основу первой главы, и за то, что поправлял меня, когда память мне изменяла. Спасибо организаторам конференции Techonomy 2010 за то, что пригласили меня принять участие в открытии – подготовка к конференции помогла мне в работе над заключением. Моя благодарность – всем тем, общение с кем я упомянула в тексте. Спасибо Альфреду Ассину, Родни Бруксу, Дэвиду Фентону, Кевину Макгарви, Сеше Пратапу, Дейне Рэндалл, Энди Синглтону и Кевину Славину за щедрую критику и обмен мыслями, а также Рику Коту за советы.

Я благодарна еще нескольким людям за то, что посоветовали мне взяться за сложное дело написания книги. Спасибо Джону Брокману и Дэну Халперну из издательства Ессо за то, что помогли запустить проект, а также Мэтту Вейланду и его помощнице Шан‑ не Милки за то, что помогли собрать из кусочков единое целое.

Спасибо и другим сотрудникам Ессо за то, что помогли воплотить мой замысел в жизнь, и Эндрю Уайли за организацию последнего этапа. Мне приятно было работать с прекрасной командой иллюстраторов – Томми Макколлом, Аной Бекер и Рихертом Шнор‑ ром, – сумевшей передать сложные идеи при помощи ясных и точных картинок.

Наконец, я благодарна своим коллегам–исследователям и другим физикам за все, чему они меня научили. Спасибо моей семье за поддержку моей тяги к рациональности. Спасибо друзьям за терпение и поддержку. И спасибо всем, упомянутым и неупомянутым, кто помог мне в процессе работы над книгой осмыслить и словесно оформить свои идеи.

 


[1]Я буду часто использовать приближенное значение 27 км. – Прим. авт.

 

[2]Рэндалл Л. Закрученные пассажи. Проникая в тайны скрытых размерностей пространства. – М.: УРСС, Либроком, 2011.

 

[3]Большой адронный коллайдер весьма велик, но используется он для изучения мельчайших объектов. Причины, по которым он сделан таким большим, будут описаны ниже, когда мы рассмотрим детально конструкцию БАКа. – Прим. авт.

 

[4]Conseil Europeenpourla Recherche Nucleaire – Европейский совет ядерных исследований. – Прим. пер.

 

[5]Знаменитая песня Германа Хапфилда, ставшая очень популярной после фильма «Касабланка» (1942), в первоначальном варианте 1931 г. начиналась безошибочно опознаваемой отсылкой к последним достижениям физики:

«Век, в котором мы живем, Становится причиной опасений Из‑за скорости, новых изобретений И вещей наподобие четвертого измерения. Мы уже слегка утомлены Теорией Эйнштейна…» – Прим. авт.

 

[6]Квантовая механика может иметь макроскопические проявления в тщательно подготовленных системах; они также могут выявиться при наборе большой статистики или при использовании самых прецизионных устройств. Однако это не мешает использовать классические теории в большинстве обычных ситуаций. Все зависит от прецизионности, как будет дальше рассказано в главе 12. –Прим. авт.

 

[7]Берн Р. Тайна. – М.: Эксмо; Домино, 2011.

 

[8]Иногда я буду использовать научную запись чисел, в которой размер Вселенной выражается как 1027м. Это означает единицу с 27 нулями, что, конечно, гораздо компактнее, чем «тысяча триллионов триллионов». Самый маленький представимый масштаб составляет 10‑35м, т. е. число, обратное к единице с 35 нулями. Рост человека имеет порядок 1м – это единица вообще без нулей. Таким образом, «человеческий» масштаб находится примерно посередине между двумя крайними значениями. – Прим. авт.

 

[9]Очевидный пример: радужную пленку на воде люди могли видеть и тысячу лет назад, но то, что она появляется вследствие волновой природы света, не имело практического значения. – Прим. пер.

 

[10]Искомая величина определяется через другую величину, измеряемую непосредственно. – Прим. пер.

 

[11]Levenson Т. Measure for Measure: A Musical History of Science. – Simon & Schuster, 1994.

 

[12]Во времена инквизиции католическая церковь не включала труды Тихо Браге в список запрещенных книг, как можно было ожидать исходя из его принадлежности к протестантизму, так как в его теории Земля была неподвижна, и тем не менее наблюдения Галилея ей прямо не противоречили. –Прим. авт.

 

[13]Перевод В. Б. Микушевича. –Прим. пер.

 

[14]Перевод М. Литвиновой.

 

[15]Augustine. The Literal Meaning of Genesis. Vol. 1, books 1‑6 (New York: Newman Press, 1982).

 

[16]Эмерджентность – несводимость свойств системы к сумме свойств ее компонентов; синоним – «системный эффект». – Прим. ред.

 

[17]Holton G. Johannes Kepler’s Universe: Its Physics and Metaphysics // American Journal ofPhysics, May, 1956, №24, pp. 340‑351.

 

[18]Calvin J. Institutes of Christian Religion. – Minneapolis: Fortress Press, 1999.

 

[19]К примеру, единица длины Древней Греции – стадия – не имела фиксированной длины, поскольку в разные времена основывалась на длине различных частей тела человека в разных регионах страны. – Прим. авт.

 

[20]Там, конечно, есть электромагнитное поле, но практически нет вещества. – Прим. авт.

 

[21]Величина, на малых скоростях приблизительно равная произведению массы и скорости, а на релятивистских–отношению энергии к скорости света. –Прим. авт.

 

[22]От англ. glue – клей. – Прим. пер.

 

[23]Обратите внимание, что этот рисунок соответствует более точной версии объединения, чем первоначальный вариант Джорджи и Глэшоу, в котором линии сходились почти, но не совсем. Несовершенство теории удалось показать позже, когда появились более точные данные об интенсивности взаимодействий. – Прим. авт.

 

[24]Они сближаются, но сегодня мы знаем, что в пределах стандартной модели объединение невозможно. Однако ее можно достичь в модифицированных вариантах стандартной модели, например с привлечением суперсимметрии, о чем пойдет речь в главе 17. –Прим. авт.

 

[25]Физики в области элементарных частиц измеряют энергию в электронвольтах. Энергию в 1 эВ приобретает электрон, ускоряясь в электрическом поле при разности потенциалов в один вольт. В дальнейшем изложении потребуются гига‑ и тераэлек‑ тронвольты: 1 ГэВ = 1 млрд эВ, 1 ТэВ = 1 трлн эВ. –Прим. авт.

 

[26]Занятно, что сюжет романа «Ангелы и демоны» Дэна Брауна построен на антивеществе, в то время как БАК – первый коллайдер CERN, в котором используется только «обычное» вещество. –Прим. авт.

 

[27]В 1997 г. Европейское физическое общество признало вклад Роберта Браута, Франсуа Энглерта и Питера Хиггса, а в 2004 г. им была присуждена премия Вольфа по физике. В 2010 г. Франсуа Энглерт, Роберт Браут, Питер Хиггс, Джеральд Гуральник, Κ. Р. Хаген и Том Киббл получили от Американского физического общества премию Сакураи в области теоретической физики частиц. Я буду далее ссылаться только на Хиггса, так как меня интересует физический механизм, а не личности. Конечно, если бозон Хиггса будет открыт, Нобелевскую премию получат не более чем три человека, и вопросы приоритета будут весьма сложными. –Прим. авт.

 

[28]В рамках Стандартной модели физики частиц, как она описана в этой книге и где есть только один хиггсовский бозон, в эпоху температур порядка 100 ГэВ в ранней Вселенной имел место фазовый переход другого типа – гладкий кроссовер. – Прим. науч. консулът.

 

[29]Неясно, должна ли Стандартная модель включать очень тяжелые нейтрино с «правой» киральностью, которые, по–видимому, существуют и играют роль в массе нейтрино. – Прим. авт.

 

[30]10‑29 м. – Прим. пер.

 

[31]Первоначально он предназначался для ускорения протонов и антипротонов. В настоящее время он используется в составе БАКа в качестве протонного суперсинхротрона SPS и ускоряет только протоны. – Прим. авт.

 

[32]Стандартная модель – теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействия всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает темную материю, темную энергию и не включает в себя гравитацию. –Прим. ред.

 

[33]В 2011 г. были достигнуты энергии 3,5 ТэВ на пучок, а в апреле 2012 г. ее подняли до 4 ТэВ на пучок, то есть до энергии столкновения 8 ТэВ в системе центра масс. В течение 2011 г. на ATLAS и CMS было зарегистрировано по 560 трлн столкновений, а план на 2012 г. составлял по 1500 трлн на каждой из установок. –Прим. пер.

 

[34]http://lsag.web.cern.ch/lsag/LSAG‑Report.pdf.

 

[35]Назван в честь французского физика Пьера Виктора Оже. – Прим. пер.

 

[36]Выражением to big to fail («слишком велики, чтобы погибнуть»! в 2008 г. описывались несколько крупнейших банков и страховых компаний США, которые пришлось спасать от банкротства за счет вливания бюджетных средств. Власти опасались, что крах подобной системообразующей структуры может вызвать каскад дальнейших банкротств и общий коллапс экономики. ■– Прим. пер.

 

[37]Posner R. Catastrophe: Risk and Response. – Oxford University Press, 2004.

 

[38]Математическая абстракция, подразумевающая обязательное наличие как выигрывающей, так и проигрывающей стороны. –Прим. пер.

 

[39]Председатели Совета управляющих Федеральной резервной системы США в 1987‑2006 гг. и с 2006 г. соответственно. –Прим. пер.

 

[40]Leonhardt D. The Fed Missed This Bubble: Will It See a New One? // New York Times, January, 5, 2010.

 

[41]В этой книге я использую термин «систематическая неопределенность» (systematic uncertainty), а не более частый– систематическая погрешность» (systematic error). Последняя часто ассоциируется с ошибкой, в то время как «неопределенность» указывает на неизбежные ограничения, налагаемые аппаратурой. – Прим. авт.

 

[42]Часто используется термин «статистическая погрешность», когда говорят о неопределенности измерений, связанной с конечностью их числа. – Прим. авт.

 

[43]В этой таблице даны отдельно левые и правые частицы. Они различаются киральностью, которая для безмассовых частиц говорит о вращении (спине) вдоль направления движения. Массивные частицы могут быть обоих типов: например, электрон может быть левым или правым. В данном случае признаки отличия не так важны, как разница во взаимодействиях. Если бы все частицы не имели масс, то слабое взаимодействие, превращающее верхние кварки в нижние, а заряженные лептоны – в нейтральные, действовало бы только на левые частицы. С другой стороны, сильное и электромагнитное взаимодействия влияют на частицы обоих типов, причем только кварки обладают сильным зарядом. –Прим. авт.

 

[44]Три типа нейтрино через слабое взаимодействие «спарены» с тремя разновидностями заряженных лептонов. Однако, раз возникнув, нейтрино могут осциллировать, переходя из одного типа в другой, и связь их с конкретными лептонами теряется. Нейтрино иногда просто нумеруют согласно их относительной массе, а иногда помечают знаком соответствующего лептона в зависимости от контекста. –Прим. авт.

 

[45]В специальных экспериментах по исследованию свойств нейтрино они регистрируются через рождение заряженных лептонов того же поколения при рассеянии на ядрах. –Прим. науч. консулът.

 

[46]По–английски слово jet означает и реактивный двигатель (ракету), и струю. – Прим. пер.

 

[47]Если исходный b–мезон нейтрален, вместо этого будет виден трек, исходящий из точки распада, но не будет предыдущего трека от места его образования. – Прим. авт.

 

[48]Тем не менее взаимодействие между W–бозоном, t–кварком и b–кварком является причиной того, что t–кварк может распасться на b–кварк и W–бозон. –Прим. авт.

 

[49]Через нее можно также определить релятивистскую массу, которая зависит от импульса и энергии, но следствия будут теми же. –Прим. авт.

 

[50]Обратите внимание, что на этой схеме разграничены бозоны и фермионы – два класса частиц, различаемые квантовой механикой. Переносчики взаимодействий и гипотетические частицы Хиггса – бозоны, а все остальные частицы Стандартной модели – фермионы. –Прим. авт.

 

[51]По состоянию на момент написания книги. – Прим. пер.

 

[52]Описание сверхпроводимости через фотонную массу дали в 1950 г. В. Л. Гинзбург и Л. Д. Ландау. Идея генерации массы частиц путем спонтанного нарушения симметрии высказана в 1962 г. Филипом Андерсоном. Питер Хиггс в 1964 г. предложил для релятивистских уравнений Гинзбурга – Ландау решение в виде частиц и предсказал существование тяжелого скалярного бозона. Аналогичные идеи одновременно выдвинули Браут и Энглерт, Гуральник, Хаген и Киббл. Последующие работы Виктора Попова и Людвига Фаддеева по калибровочным полям, Стивена Вайнберга и Абдуса Салама по теории электрослабого взаимодействия и Герарда ’т Хоофта по перенормировке позволили к середине 1970–х гг. сформулировать то, что сейчас известно как механизм Хиггса. –Прим. пер.

 

[53]Дебатируется также вопрос о том, относятся ли к Стандартной модели правые нейтрино. Даже если таковые присутствуют, они, скорее всего, чрезвычайно тяжелы и не слишком важны для низкоэнергетических процессов. – Прим. авт.

 

[54]Так оно и случилось! Четвертого июля 2012 г. было официально объявлено, что на обеих экспериментальных установках достоверно обнаружены нейтральные частицы–бозоны с энергией 125,3–126,0 ГэВ, которые, вероятно, и являются долгожданными бозонами Хиггса. – Прим. пер.

 

[55]Скаляр (от лат. scalaris – ступенчатый) – величина, каждое значение которой может быть выражено одним (действительным) числом. Примерами скаляров являются длина, площадь, время, масса, плотность, температура и т. п. – Прим. ред.

 

[56]Забавно тем не менее, что применение принципа Паули для галактической темной материи из фермионов дает модельно–независимое ограничение снизу на массу частицы темной материи (фермион должен быть тяжелее, чем примерно 1 кэВ). – Прим. науч. консулът.

 

[57]Ранее модель (почти) экспоненциально расширяющейся Вселенной была предложена в работах А. Старобинского для решения проблемы начальной сингулярности в теории горячего Большого взрыва. –Прим. науч. консулът.

 

[58]WMAP был запущен 30 июня 2001 г. и проработал до августа 2010 г. Обработка его научных данных продолжается. Planck запущен 15 мая 2009 г. – Прим. пер.

 

[59]Точнее – из массы, вычисляемой на основании разумных предположений о количестве звездной и газопылевой материи в галактиках скопления с учетом ее размеров и светимости. –Прим. пер.

 

[60]Некоторые частицы темной материи совпадают со своими античастицами. В этом случае они должны встретиться с другими такими же частицами. – Прим. авт.

 

[61]Аномальные события были зарегистрированы экспериментами COGENT, CRESST и усовершенствованным CDMSII. К сожалению, в рамках наиболее мотивированных и разработанных моделей темной материи эти аномалии противоречат результатам других экспериментов– и друг другу, в частности. –Прим. науч. консулът.

 

[62]Что означает примерно следующее: полезный груз для исследования материи и антиматерии и астрофизики легких ядер. –Прим. пер.

 

[63]Гладуэлл М. Гении и аутсайдеры: Почему одним все, а другим ничего? – М.: Юнайтед Пресс, 2010.

 

[64]По–немецки Rand означает «край» или «грань», а All– «Вселенная». –Прим. авт.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.