Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Среднее и максимальное значение концентраций по каждому источнику



Источник Концентрация ЗВ (Ссрмакс..), мг/м3
оксиды азота оксид углерода акролеин ацетальдегид уксусная кислота этанол
Ист.№1 0.25;0.31 0.77;0.96 0.13;0.16 - - -
Ист.№2,3 - - - - - -
Ист.№4 0.19;0.24 0.29;0.36 0.14;0.18 0.22;0.27 1.9;2.4 5.3;6.6
Ист.№5 0.23;0.29 0.64;0.8 0.12;0.15 - - -
Ист.№6 0.29;0.36 0.56;0.7 0.16;0.2 - - -

 

Таким образом, можно сделать вывод, что основными загрязнителями являются оксиды азота, оксид углерода, а также акролеин. Концентрация гидроксида натрия и аэрозоля масла растительного не была определена, так как была ниже предела обнаружения данных веществ. На источниках №2 и №3 выбросы ЗВ не обнаружены в ходе данных исследований.

Полученные в ходе лабораторных исследований результаты, а также рассчитанные значения средней и максимальной концентрации ЗВ были занесены в «Протокол измерений концентраций загрязняющих веществ в промышленных выбросах в атмосферу» (см. приложение 1). На основании этих данных далее мной были произведены расчеты массовых и валовых выбросов веществ.

Значения концентраций оксида углерода были получены при непосредственном отборе проб. Анализ таких ингредиентов как акролеин, ацетальдегид, этанол, уксусная кислота проводились с использованием хроматографического метода. Пробы гидроксида натрия, азота диоксида, азот (II) оксида и масла растительного исследовались с использованием фотометрического метода. Далее рассмотрим подробнее основной принцип этих методов.

3.6.1. Фотометрический метод анализа проб

Фотометрия или калориметрия метод, при котором поглощение света измеряют главным образом в видимой области спектра, реже - в ближних УФ и ИК-областях (т. е. в интервале длин волн от ~ 315 до ~ 980 нм), а также для выделения нужного участка спектра (шириной 10-100 нм) используют узкополосные светофильтры. [33]

Принцип фотометрии основан на пропускании света с определенной длинной волны через кювету с биологической пробой. Фотометрия измеряет световой поток отразившийся от биопробы. Длина волны подбирается таким образом, чтобы поглощение света для данной реакционной смеси было максимальным.

Каждое вещество поглощает излучение с определенными (характерные только для него) длинами волн, т.е. длина волны поглощаемого излучения индивидуальна для каждого вещества, и на этом основан качественный анализ по светопоглошению.[12] В данном случаи для измерения массовой концентрации оксидов азота использовался светофильтр с длинной волны 540 нм, для измерения концентрации гидроксида натрия светофильтр с длиной волны – 590 нм, для измерения растительного масла - 400 нм.

Основой количественного анализа является закон Бугера-Ламберта-Бера, который связывает уменьшение интенсивности света, прошедшего через слой светопоглощающего вещества, с концентрацией этого вещества и толщиной слоя:

(2),

и с другой стороны :

А = –lg (I / I0) = –lg T (3)

Где А – оптическая плотность вещества;

I0 и I – интенсивность потока света, направленного на поглощающий раствор и прошедшего через него соответственно;

с – концентрация вещества, моль/л;

l – толщина светопоглощающего слоя;

e - молярный коэффициент светопоглощения (экстенции);

T - коэффициент пропускания, который характеризует уменьшение интенсивности света, прошедшего через раствор.[3]

В соответствии с формулами (2) и (3) зависимость оптической плотности от концентрации раствора графически выражается выходящей из начала координат прямой линией, тангенс угла наклона которой равен коэффициенту поглощения. Также следует отметить, что данный закон справедлив только для монохроматического света.

Для определения концентрации анализируемого вещества существует несколько методов, такие как: молярного коэффициента светопоглощения; добавок; дифференциальной фотометрии; фотометрического титрования. Но самым широко используемым является метод построения калибровочного (градуировочного) графика. В процессе анализа отобранных проб загрязняющих веществ от источников гостиницы «Октябрьская» также использовался именно этот метод.

Калибровочный график строиться обязательно перед проведением каких-либо исследований. Предварительно были приготовлены 5 разведенных известной концентрации растворов искомого вещества и определены в кювету фотометра.

Фотометр – прибор, использующийся для определения искомого вещества в исследуемой среде и (или) вычисления его концентрации, либо активности, используя изменение окраски реакционной смеси (либо интенсивности окраски, т.е. ее оптической плотности). [2]

Далее полученные результаты оптической плотности заносились на калибровочный график. График строят, откладывая на оси абсцисс содержание вещества в мкг, а на оси ординат - оптическую плотность растворов. Таким образом, определив массу того или иного вещества в известном объеме пробы можно определить его концентрацию по формуле (4):

С= m/ Vн.у. (4),

Где С - концентрация искомого вещества , мг/м3;

m – значение массы, определенное с использованием калибровочного графика, мг;

V – объем пробы, (н.у.: t=0oC, P0=760 мм.рт.ст.) м3.

После того как концентрация была определена, ее значение фиксировалось лаборантом НППФ «Экосистема» в «Протокол измерения концентраций загрязняющих веществ в промышленных выбросах в атмосферу».

3.6.2. Хроматографический метод анализа проб

Хроматография (от греч. цвет) — метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент), протекающей через неподвижную. Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.[33]

Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).

Принципиальным отличием хроматографических методов от других физико-химических методов анализа является возможность разделения близких по свойствам веществ. После разделения компоненты анализируемой смеси можно идентифицировать (установить природу) и количественно определять (массу, концентрацию) любыми химическими, физическими и физико-химическими методами. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.

Основные достоинства хроматографического анализа:

  • экспрессность; высокая эффективность; возможность автоматизации и получение объективной информации;
  • сочетание с другими физико-химическими методами;
  • широкий интервал концентраций соединений;
  • возможность изучения физико-химических свойств соединений;
  • осуществление проведения качественного и количественного анализа;
  • применение для контроля и автоматического регулирования технологических процессов.[35]

Существует множество видов хроматографии. В соответствии с агрегатным состоянием элюента различают:

  • газовую хроматографию ГХ;
  • жидкостную хроматографию ВЭЖХ.

При анализе проб акролеина, ацетальдегида, этанола, уксусной кислоты, отобранных от источников гостиницы «Октябрьская» специалистами НППФ «Экосистема» был использован метод газовой хроматографии.

Газовая хроматография —метод разделения летучих компонентов, при котором подвижной фазой служит инертный газ (газ-носитель), протекающий через неподвижную фазу с большой поверхностью. В качестве подвижной фазы используют водород, гелий, азот, аргон, углекислый газ. Газ-носитель не реагирует с неподвижной фазой и разделяемыми веществами.[33]

Газохроматографическое разделение и анализ осуществляются в специальном приборе газовом хроматографе. Раствор анализируемой пробы вводился в поток газа при повышенной температуре. В жидком состоянии проба быстро испаряется и потоком газа переносится в хроматографическую колонку, находящуюся в термостате. Насадкой в колонке служат твердый сорбент с развитой поверхностью (50-500 м2/г) или твердый макропористый носитель, на которую тонким слоем нанесена нелетучая жидкость - неподвижная жидкая фаза. Средний диаметр частиц сорбента 0,1-0,4 мм (колонку заполняют близкими по размеру частицами).

Далее при анализе разделённые в хроматографической колонке вещества вместе с элюентом попадают в установленное на выходе из колонки специальное устройство – детектор, регистрирующее их концентрации во времени. Полученную в результате этого выходную кривую называют хроматограммой, которая выражает зависимость концентрации компонентов на выходе из колонки от времени.

Для качественного хроматографическогоанализа определяют время от момента ввода пробы до выхода каждого компонента из колонки при данной температуре и при использовании определённого элюента. Для количественного анализа определяют высоты или площади хроматографическихпиков с учётом коэффициентов чувствительности используемого детектирующего устройства к анализируемым веществам.[35]

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.