Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Способы создания предварительного напряжения



Тема 3.ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ

ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ КОНСТРУКЦИЙ

 

 

Сущность предварительного напряжения

 

Метод расчета по предельным состояниям является общим и применяется как для обычных, так и для предварительно напряженных железобетонных конструкций. Однако последние обладают рядом особенностей, которые необходимо учитывать в расчетах.

Ранее указывалось, что низкая прочность бетона на растяжение и малая растяжимость являются его существенным недостатком, снижающим строительные качества железобетона. Поскольку предельная растяжимость бетона равна в среднем εbtu= 15·10-5, трещины в бетоне могут возникнуть уже при напряжениях в арматуре σs = εsEs=l5·10-5·2·105=30 МПа. С увеличением нагрузки трещины будут увеличиваться. В элементах, армированных сталями классов А-II, A-III, при эксплуата­ционных нагрузках σs = 270...340 МПа ширина раскры­тия трещин не превышает допустимой (acrc,u ≤ 0,3...0,4 мм). При применении же высокопрочной арматуры (σs,ser ≥ 500 МПа) ширина раскрытия трещин будет существенно превышать допустимую.

Применение растянутой высокопрочной арматуры оказывается возможным лишь в предварительно напряженных конструкциях, в которых трещины образуются при значительно более высоких нагрузках, а ширина их раскрытия, как правило, не превышает допустимых пределов. При этом полностью используются прочностные свойства этой арматуры.

Впервые высокопрочная арматура была успешно применена в предварительно напряженных железобетонных конструкциях во Франции инж. Фрейссинэ в 1928 г., а в СССР — проф. В.В. Михайловым в 1932 г.

В последние годы применение предварительного напряжения стало одним из основных направлений совершенствования железобетонных конструкций. Оно позволяет:

· существенно уменьшить расход стали за счет использования арматуры высокой прочности;

· повысить трещиностойкость конструкций; увеличить жесткость, уменьшить прогибы;

· повысить выносливость конструкций, работающих под воздействием многократно повторяющихся нагрузок (от кранов, автотранспорта и т.п.);

· увеличить срок службы конструкций при эксплуатации в агрессивных средах;

· уменьшить расход бетона и снизить массу конструкций;

· расширить область применения железобетона, заменив им дефицитные сталь и дерево в таких конструкциях, как напорные трубопроводы, резервуары, шпалы и т. п.

 

Способы создания предварительного напряжения

 

Существуют две принципиальные схемы создания предварительного напряжения в железобетонных конструкциях: путем предварительного натяжения арматуры на упоры формы или стенда и натяжения ее на затвердевший бетон (забетонированную конструкцию).

· Натяжение на упоры применяют в конструкциях малых и средних пролетов, изготовляемых в заводских условиях. Арматуру укладывают в форму до бетонирования и после натяжения до заданного значения напряжения закрепляют на упорах (рис. 3.1, а). Затем элемент бетонируют. Когда бетон достигает необходимой передаточной прочности Rbp, арматуру освобождают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает бетон, поскольку имеет с ним надежное сцепление (рис. 3.1, б).

Натяжение на бетон применяют главным образом для большепролетных конструкций (ферм, мостов и т. п.). В этом случае изготовляют бетонный или малоармированный элемент, в котором устраивают каналы или пазы для размещения напрягаемой арматуры (рис. 3.1, в). Каналы имеют размеры на 5...15 мм больше диаметра арматуры и создаются путем укладки гофрированных стальных тонкостенных трубок, оставляемых в теле конструкции, или с помощью каналообразователей, извлекаемых из свежеуложенного бетона. Затем арматуру натягивают до заданного напряжения (рис. 3.1, г) и закрепляют на торцах конструкции. В процессе натяжения арматуры происходит обжатие бетона. После этого канал заполняют цементным или цементно-песчаным раствором под давлением (инъецируют). Арматура может располагаться и с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров). В этом случае после натяжения арматуры поверх ее наносят слой бетона под давлением (торкрет-бетона).

 

Рис. 3.1. Схемы создания предварительного напряжения:

1 — форма; 2 — арматура; 3 — упор; 4 — домкрат; 5 — анкер; 6 — канал

 

Натяжение арматуры на упоры производится механическим, электротермическим и электротермомеханическим способами, а на бетон, как правило, механическим способом.

· Для натяжения механическим способом применяют гидравлические и винтовые домкраты, намоточные машины и др.

· Сущность электротермического способа натяжения арматуры заключается в том, что стержневую или проволочную арматуру, снабженную по концам ограничителями, установленными на определенном расстоянии друг от друга, разогревают током до 300...350°С, в результате чего она удлиняется. Нагретые стержни укладывают в форму таким образом, чтобы ограничители оказались заведенными за упоры формы. Упоры препятствуют укорочению стержней при остывании, благодаря чему в стержнях возникают заданные растягивающие напряжения. После укладки и твердения бетона арматуру отпускают с упоров и вследствие ее укорочения происходит обжатие бетона конструкции.

· Электротермомеханический способ натяжения представляет сочетание электротермического и механического способов.

· В последние годы для создания предварительного натяжения в конструкциях начинают успешно применять бетоны на специальных напрягающих цементах (НЦ). Бетон на таком цементе при твердении увеличивается в объеме и вследствие сцепления с арматурой растягивает ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения. Такие конструкции называют самонапряженными. Применение напрягающего цемента позволяет отказаться от приспособлений для натяжения арматуры.

Напрягаемую арматуру можно располагать в элементе в двух и даже в трех направлениях, тогда создается соответственно двухосное или трехосное предварительное напряжение.

При назначении передаточной прочности Rbp должны быть приняты во внимание два обстоятельства: с одной стороны, желательна более ранняя передача усилия с арматуры на бетон в целях повышения производительности заводов ЖБИ и улучшения использования производственных площадей; с другой стороны, высокий уровень обжатия при низкой передаточной прочности приведет к значительным деформациям ползучести и потерям предварительного напряжения в арматуре. Учитывая эти обстоятельства, нормы рекомендуют назначать передаточную прочность не ниже 11 МПа, а при арматуре классов А-VI, К-7, К-19, В-II, Вр-II — не менее 15,5 МПа. Кроме того, величина Rbp должна быть не менее 50 % от принятого класса бетона.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.