Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Ультразвук. Область использования, влияние на организм, основные профилактические мероприятия.



Ультразвук - это упругие колебания и волны с частотой выше 20 кГц, не слышимые человеческим ухом. В настоящее время удается получать ультразвуковые колебания с частотой до 10 ГГц. Соответственно указанным частотным диапазонам область длины ультразвуковых волн в воздухе составляет от 1,6 до 0,3?10-4 см, в жидкостях - от 6,0 до 1,2?10-4 см и в твердых телах - от 20,0 до 4,0?10- 4 см.

Ультразвуковые волны по своей природе не отличаются от упругих волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления на границах различных сред, дифракции и рассеяния ультразвука при наличии препятствий и неоднородностей на границах, законы волноводного распространения в ограниченных участках среды.

Вместе с тем высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только ультразвуку.

Так, возможно визуальное наблюдение ультразвуковых волн с помощью оптических методов. Благодаря малой длине ультразвуковые волны хорошо фокусируются, и, следовательно, возможно полу- чение направленного излучения. Еще одна весьма важная особенность ультразвука заключается в возможности получения высоких значений интенсивности при относительно небольших амплитудах колебаний.

Уменьшение амплитуды и интенсивности ультразвуковой волны по мере ее распространения в заданном направлении, т.е. затухание, определяется рассеянием и поглощением ультразвука, переходом ультразвуковой энергии в другие формы, например, в тепловую.

Источники ультразвука на рабочих местах. К техногенным источникам ультразвука относятся все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного, медицинского и бытового назначений, которые

генерируют ультразвуковые колебания в диапазоне частот от 20 кГц до 100 МГц и выше. Источником ультразвука может также быть оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

Основными элементами ультразвуковой техники являются ультразвуковые преобразователи и генераторы. Ультразвуковые пре- образователи в зависимости от вида потребляемой энергии подразделяют на механические (ультразвуковые свистки, сирены) и электромеханические (магнитострикционные, пьезоэлектрические, электродинамические). Механические и магнитострикционные преобразователи используются для генерации низкочастотного ультразвука, а пьезоэлектрические преобразователи позволяют получать ультразвуки высокой частоты - до 109 Гц.

Ультразвуковые генераторы предназначены для преобразования тока промышленной частоты в ток высокой частоты и для питания электроакустических систем - преобразователей как пьезоэлектрических, так и магнитострикционных.

В настоящее время ультразвук широко применяется в машиностроении, металлургии, химии, радиоэлектронике, строительстве, геологии, легкой и пищевой промышленности, рыбном промысле, медицине и т.д.

Биологическое действие ультразвука. Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется многими факторами: интенсивностью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

В частности, частота ультразвуковых колебаний определяет глубину проникновения фактора: чем выше частота, тем большая часть энергии поглощается тканями, но при этом ультразвуковые колебания проникают на меньшую глубину. Следует отметить, что поглощение ультразвука в биологических тканях не подчиняется общим закономерностям. Согласно имеющимся данным, в биологических тканях существует не квадратичная, а линейная зависимость поглощения от частоты. Это объясняется большой неоднородностью тканей организма. Неоднородностью биологических тканей обусловлена и разная степень поглощения ультразвука. Наименьшее поглощение наблюдается в жировом слое и почти вдвое большее в мышечной ткани. Серое вещество мозга в 2 раза больше поглощает ультразвук, чем белое; мало абсорбирует ультразвуковую энергию спинно-мозговая жидкость. Наибольшее поглощение наблюдается в костной ткани

При систематическом воздействии интенсивного низкочастотного ультразвука с уровнями, превышающими предельно допустимые, у работающих могут наблюдаться функциональные изменения центральной и периферической нервной систем, сердечно-сосудистой, эндокринной систем, слухового и вестибулярного анализаторов, гуморальные нарушения.

 

При экспозиции ультразвуковыми колебаниями 130 дБ на частоте 25 кГц выявлены изменения сердечного ритма, картины крови, эндокринной функции и электрогенеза мозга (уплощение ЭЭГ); отмечаются усталость, повышенная утомляемость, снижение трудоспособности.

В зависимости от интенсивности контактного ультразвука различают три основных типа его действия:

1) ультразвук низкой интенсивности способствует ускорению обменных процессов в организме, легкому нагреву тканей, микро- массажу и т.д. Низкие интенсивности не приводят к морфологическим изменениям внутри клеток, так как переменное звуковое давление вызывает только некоторое ускорение биофизических процессов, поэтому малые экспозиции ультразвука рассматриваются как физиологический катализатор;

2) ультразвук средней интенсивности за счет увеличения переменного звукового давления вызывает обратимые реакции угнетения, в частности, нервной ткани. Скорость восстановления функций зависит от интенсивности и времени облучения ультразвуком;

3) ультразвук высокой интенсивности вызывает необратимые угнетения, переходящие в процесс полного разрушения тканей.

Мероприятия по формированию и управлению качеством производственной среды на рабочих местах с источниками ультразвука в целях снижения риска нарушения здоровья работающих.

Важную роль в управлении качеством производственной среды отводят средствам и методам коллективной защиты работающих. Наиболее эффективными в этом плане считаются организационно-технические меры в источнике, снижающие уровни контактного ультразвука, воздействующего на работающих, сокращающие время контакта с ним и ограничивающие влияние неблагоприятных сопутствующих факторов производственной среды, в частности:

- разработка и внедрение нового, усовершенствованного оборудования с улучшенными ультразвуковыми характеристиками;

- создание автоматического ультразвукового оборудования, например, для очистки деталей, дефектоскопии, механической обработки материалов и др.;

- создание установок с дистанционным управлением;

- использование маломощных ультразвуковых генераторов в оборудовании, если это не противоречит требованиям технологических процессов;

- проектирование ультразвуковых установок с рабочими частотами, максимально удаленными от слышимого диапазона частот (не ниже 22 кГц), чтобы избежать действия выраженного высокочастотного шума;

Кроме того, при проектировании и разработке новой ультразвуковой аппаратуры с видеотерминальными устройствами необходимо соблюдать следующие технико-гигиенические требования:

- яркость свечения экрана не менее 100 кд/м2;

- минимальный размер светящейся точки для монохромного дисплея - 0,4 мм, для цветного дисплея - 0,6 мм;

- контрастность изображения знаков не менее 0,8;

- низкочастотное дрожание изображения в диапазоне 0,05-1,0 Гц в пределах 0,1 мм;

- частота регенерации изображения при работе с позитивным контрастом не менее 72 Гц;

- наличие антибликерного покрытия экрана.

Оптимизация факторов, определяющих тяжесть труда, достигается в результате правильного выбора позы за счет рациональной компоновки рабочего места. Для этого, прежде всего, необходимо подобрать производственное оборудование и рабочую мебель, соответствующие антропометрическим данным и психофизиологическим возможностям человека.

Следует выдерживать размеры рабочей зоны, включающей пространство, в котором располагаются органы управления оборудова- нием, заготовками, деталями, инструмент, т.е. все то, что необходимо для выполнения работ.

В процессе выполнения трудовых операций целесообразно по возможности исключить статические нагрузки, возникающие при поддержании, например, заготовок, деталей и т.д. за счет устройства верстаков, подставок для обрабатываемых деталей, а также применения манипуляторов, тележек, различных средств малой механизации для снижения динамической нагрузки и перенапряжения опорно-двигательного аппарата.

В комплексе мероприятий по научной организации труда особое место занимают рекомендации по рационализации рабочих движений и усилий.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.