Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Неопределённый интеграл и его свойства



Множество первообразных функции f(x) называется неопределённым интегралом от этой функции и обозначается символом . Как следует из изложенного выше, если F(x) - некоторая первообразная функции f(x), то , где C - произвольная постоянная. Функциюf(x) принято называть подынтегральной функцией, произведение f(x) dx - подынтегральным выражением.
Свойства неопределённого интеграла, непосредственно следующие из определения:
1. .
2. (или ).
10.3. Таблица неопределённых интегралов.
. .
. .
( ). .
. .
; . .
.
. .
. .
. .
. ; .

В формулах 14, 15, 16, 19 предполагается, что a>0. Каждая из формул таблицы справедлива на любом интервале, на котором непрерывна подынтегральная функция. Все эти формулы можно доказать дифференцированием правой части. Докажем, например, формулу 4: если x > 0, то ; если x < 0, то .
Дальше мы докажем, что любая непрерывная функция имеет первообразную и, как следствие, неопределённый интеграл. При изучении дифференцирования было установлено, что с помощью таблицы производных и правил дифференцирования без труда можно получить производную любой элементарной функции, и эта производная тоже будет элементарной функцией. Операция интегрирования этим свойством не обладает: даже относительно простые функции могут иметь первообразные, которые через элементарные функции не выражаются. Так, доказано, что не берутся в элементарных функциях следующие интегралы, относящиеся к классу специальных функций: - интеграл Пуассона; , - интегралы Френеля; , , - интегральные синус, косинус, логарифм.

10.4. Простейшие правила интегрирования.
1. ( );
2. ;
Для доказательства правил 1,2 достаточно продифференцировать выражения, стоящие справа от знака равенства и убедиться, что эти выражения являются первообразными для функций, стоящих слева. Например, . Примеры применения правил 1,2: . и т.д. Значительно расширяют круг функций, интегралы от которых напрямую сводятся к табличным, два приёма, которые являются частными случаями рассматриваемого дальше метода замены переменной в неопределённом интеграле: подведение под знак дифференциала постоянного слагаемого и постоянного множителя:
3. Подведение под знак дифференциала постоянного слагаемого: если , то . (Док-во: если , то ). Пример: .
4. Подведение под знак дифференциала постоянного множителя: если , то . (Док-во: если , то ).
Пример: . Приёмы 3, 4 легко комбинируются: если , то . Пример: .

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.