Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

По степени подготовки горючей смеси различают диффузионное и кинетическое горение.



Рассмотренные виды горения (кроме взрывчатки) относятся к диффузионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и кислородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой воспламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.

Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продуктов пиролиза.

Пиролиз– это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, сухая перегонка дерева). Поэтому сгорание твердого горючего вещества в продукт горения не сосредоточено только в зоне пламени, а имеет многостадийный характер.

Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызывая ее газификацию и процесс повторяется, таким образом поддерживая горение.

В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реагирующих компонентов и поверхности пламени путем молекулярной или кинетической диффузии, этот вид горения и называют диффузионным.

Структура пламени диффузионного горения состоит из трех зон:

В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 5000С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.

Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и происходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):

CnHm + O2 → CO + CO2 + Н2О;

2CO = CO + C.

В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:

2CO+O2=2CO2;

C+O2=CO2.

Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.

Все виды диффузионного горения присущи пожарам.

Кинетическимгорением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопроводности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.

В данном случае при поджигании горючей смеси в какой либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким образом, пламя при кинетическом горении чаще всего не стационарно.

Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.

Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.

По степени сгорания, т.е. полноты протекания реакции горения до конечных продуктов, горение бывает полным и неполным.

Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает кислород, который частично расходуется в 3 зоне, и образуются промежуточные продукты. Последние догорают в 3 зоне, где кислорода больше, до полного сгорания. Наличие сажи в дыму говорит о неполном горении.

Другой пример: при недостатке кислорода углерод сгорает до угарного газа:

2C+O2=2СО.

Если добавить O, то реакция идет до конца:

2СО+O2=2СО2.

Скорость горения зависит от характера движения газов. Поэтому

3. Температурные пределы воспламенения жидкости.

Все горючие жидкости способны испаряться, и горение их происходит только в паровой фазе, находящейся над поверхностью жидкости. Количество паров зависит от состава и температуры жидкости. Горение паров в воздухе возможно лишь при определенной их концентрации.

Наименьшая температура жидкости, при которой концентрация ее паров в смеси с воздухом обеспечивает воспламенение смеси от открытого источника зажигания без последующего устойчивого горения, называетсятемпературой вспышки. При температуре вспышки не возникает стабильного горения, поскольку при этой температуре концентрация смеси паров жидкости с воздухом не является устойчивой, что необходимо для такого горения. Количество тепла, выделенного при вспышке, недостаточно для продолжения горения, а вещество еще недостаточно нагрето. Для того чтобы воспламенить жидкость, нужен не кратковременный, а длительно действующий источник зажигания, температура которого была бы выше температуры самовоспламенения смеси паров этой жидкости с воздухом.

В соответствии с ГОСТ 12.1.004-76 под горючей жидкостью (ГЖ) понимают жидкость, способную самостоятельно гореть после удаления источника зажигания и имеющую температуру вспышки выше +61° С (в закрытом тигле) или +66° С (в открытом тигле).

Легковоспламеняющаяся жидкость (ЛВЖ) - это жидкость, способная самостоятельно гореть после удаления источника зажигания и имеющая температуру вспышки не выше +61° С (в закрытом тигле) или +66° С (в открытом тигле).

Температура вспышки является низшей температурой, при которой жидкость становится особо опасной в пожарном отношении, поэтому ее величина принята в основу классификации горючих жидкостей по степени их пожарной опасности. Пожаровзрывоопасность жидкостей может характеризоваться также температурными пределами воспламенения ее паров.

Температура жидкости, при которой концентрация насыщенных паров в воздухе в замкнутом объеме способна воспламениться при воздействии источника зажигания, называется нижним температурным пределом воспламенения. Температура жидкости, при которой концентрация насыщенных паров в воздухе в замкнутом объеме еще может воспламениться при воздействии источника зажигания, называется верхним температурным пределом воспламенения.

 

4. Перекисная теория окисления в дальнейшем была развита Н. Н. Семеновым , который подвел под нее кинетические основы на базе разработанной им теории цепных реакций.

Согласно перекисной теории окисления, первичными продуктами нагаромасляных отложений являются перекиси, образующиеся при окислении масла в цилиндре компрессора и в воздухопроводе. Образование перекиси сопровождается выделением значительного количества тепла, при этом выделяется активный кислород, что способствует дальнейшему развитию окисления. При длительном протекании окислительных реакций, а также с повышением температуры и давления температура отложений превышает температуру окружающей среды, выделяется достаточное количество тепла, которое и обусловливает самовозгорание отложений без внешнего зажигания их.

Согласно перекисной теории окисления, в реакции с горючим веществом участвуют лишь те молекулы кислорода, запас энергии которых достигает энергии активации или превышает ее. Под энергией активации понимают тот минимум энергии, которым должны обладать взаимодействующие частицы, чтобы между ними произошла реакция.

Согласно перекисной теории окисления, предложенной в 1897 г. русским ученым Бахом, первичный процесс окисления заключается в прямом присоединении молекулы кислорода к молекуле окисляемого углеводорода с образованием перекисей. Такой полураспад происходит при взаимодействии молекулярного кислорода с легко окисляющимся веществом. В результате образуется перекись, служащая окислителем для трудно окисляющегося вещества.

Согласно перекисной теории окисления, предложенной А. Н. Бахом, первичный процесс окисления заключается в прямом присоединении молекулы кислорода к молекуле окисляемого углеводорода с образованием перекисей с активной группой - О - О. В результате образуется активизированная перекись, служащая окислителем для других трудноокисляемых соединений.

Однакоперекисная теория окисления не в состоянии объяснить некоторые характерные особенности процесса окисления, например существование индукционного периода, предшествующего видимой реакции, резкое действие следов примесей на скорость процесса и др. Это было объяснено учением о цепных реакциях, созданным Н. Н. Семеновым и его школой.

Однакоперекисная теория окисления не в состоянии объяснить некоторые характерные особенности процесса окисления, как, например, существование индукционного периода, предшествующего видимой реакции, резкое действие следов примесей на скорость процесса и др. Это было объяснено учением о цепных реакциях.

Таким образом, перекисная теория окисления поясняет химическую сторону механизма возникновения процесса окисления горючих веществ и получение первичных продуктов, которые при этом возникают. Она хорошо согласуется с экспериментальными наблюдениями и позволяет предусмотреть меры борьбы с рядом вредных явлений, протекающих при хранении и использовании горючих веществ.

Последними двумя исследователями была созданаперекисная теория окисления, сыгравшая большую роль в химии.

Способность ТЭС предотвращать детонацию объясняют с позицийперекисной теории окисления. При высоких температурах в камере сгорания ТЭС разлагается на очень активные свинцовые и этильные радикалы, способные ступать в реакции с перекисями, разрушая их. При этом образуются малоактивные продукты окисления углеводородов и окись свинца. Окись свинца, взаимодействуя с кислородом воздуха, снова окисляется в двуокись свинца, способную реагировать с новой перекисной молекулой.

Энглер одновременно, независимо друг от друга предложилиперекисную теорию окисления, которая применима к окислению горючих веществ. Согласно этой теории в горючих смесях, в которых реакции окисления не возникают при низкой температуре, окисление происходит при их нагревании. Чем большей энергией обладает молекула, тем менее прочны в ней связи между атомами. При определенном запасе энергии эти связи разрываются и молекула распадается на отдельные атомы или радикалы, из которых создаются новые молекулы. На этом свойстве внутримолекулярных связей основано получение целого ряда веществ. Известняк при нагревании также распадается, образуя окись кальция ( негашеную известь) и углекислый газ.

В основе современных представлений об окислении жиров и масел лежитперекисная теория окисления органических соединений Баха - Энглера и теоретические представления о цепных реакциях, сформулированные советским ученым.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.