Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Расчет интерференционной картины от двух когерентных источников света. Расстояние между интерференционными полосами и ширина интерференционной полосы.



Расчет интерференционной картины можно провести, используя две узкие параллельные щели, расположенные достаточно близко друг к другу (рис. 248).

Рис. 248

Щели S1 и S2находятся на расстоянии dдруг от друга и являются когерентными (реальными или мнимыми изображениями источника Sв какой-то оптической системе) источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l≫d. Начало отсчета выбрано в точке О, симметричной относительно щелей.

Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода D= s2 – s1. Из рис. 248 имеем

откуда s22 - s21 = 2xd, или

Из условия l≫d следует, что s1 + s2 » 2l, поэтому

(173.1)

Подставив найденное значение D (173.1) в условия (172.2) и (172.3), получим, что максимумы интенсивности будут наблюдаться в случае, если

(173.2)

а минимумы -- в случае, если

(173.3)

Расстояние между двумя соседними максимумами (или минимумами), называемое шириной интерференционной полосы, равно

(173.4)

Dх не зависит от порядка интерференции (величины m) и является постоянной для данных l, d и l0. Согласно формуле (173.4), Dx обратно пропорционально d; следовательно, при большом расстоянии между источниками, например при d » l, отдельные полосы становятся неразличимыми. Для видимого света l0 » 10-7 м, поэтому четкая, доступная для визуального наблюдения интерференционная картина имеет место при l≫d (это условие и принималось при расчете). По измеренным значениям l, d вDх, используя (173.4), можно экспериментально определить длину волны света. Из выражений (173.2) и (173.3) следует, таким образом, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m = 0, проходит через точку О. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m = 1), второго (m = 2) порядков и т. д.

Описанная картина, однако, справедлива лишь при освещении монохроматическим светом (l0 = const). Если использовать белый свет, представляющий собой непрерывный набор длин волн от 0,39 мкм (фиолетовая граница спектра) до 0,75 мкм (красная граница спектра), то интерференционные максимумы для каждой длины волны будут, согласно формуле (173.4), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0максимумы всех длин волн совпадают, и в середине экрана будет наблюдаться белая полоса, по обе стороны которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т. д. (ближе к белой полосе будут находиться зоны фиолетового цвета, дальше - зоны красного цвета).

Ширина интерференционных полос. Обычно экран для наблюдения интерференционной картины располагают так, чтобы оба луча и нормаль к экрану находились в одной плоскости. В этом случае ширина интерференционных полос полностью определяется углами падения световых волн на экран и длиной световой волны и не зависит от оптической схемы формирования интерферирующих волн.

Пусть две плоские световые волны падают на экран под углами и (рис. 19), точки и - середины двух соседних светлых полос на экране, - поверхность равной фазы первой волны, - поверхность равной фазы второй волны. Поверхность имеет ту же фазу, что и поверхность , так как в точке фазы двух волн одинаковые (светлая полоса). Поэтому можно считать, что это одна и та же поверхность равной фазы волны, идущей от одного точечного источника разными путями. Следовательно, оптическую разность хода, например для точки экрана , можно отсчитывать от пары точек и как бы общей поверхности равной фазы.

Из рис. 19 видно, что поверхность равной фазы первой волны еще не дошла до точки на отрезок , а поверхность второй волны уже зашла за точку на отрезок . Тогда оптическая разность хода для точки равна

.

Точки и - середины соседних светлых полос, тогда оптическая разность хода равна длине волны , так как при переходе по экрану на одну полосу разность хода меняется на . Выражая из этого равенства ширину полосы , и обозначая ее через , получаем

,

где знак '+' соответствует положительным углам падения и отсчитанным в разные стороны от нормали к экрану, как на рис. 19.

В большинстве задач углы падения малы, тогда и выражение для ширины полос упрощается

,

где - угол между лучами сходящимися на экране.

Эта формула сводит оптическую задачу к геометрической. Для определения ширины интерференционных полос нужно построить два луча, выходящие из одной точки источника света и попадающие в одну точку экрана. Ширина полос - это отношение длины волны света к углу между лучами, сходящимися в одну точку.

Если ширины соседних полос заметно различаются, то термина "ширина полос" избегают. Такая ситуация возникает при интерференцииплоской и сферической волн, например при наблюдении колец Ньютона. Кольца Ньютона наблюдаются при интерференции волны, отраженной от сферической поверхности выпуклой линзы, и волны, отраженной от плоской поверхности, соприкасающейся со сферической поверхностью линзы. В этой задаче вместо ширины полос ищут радиус светлого (или темного) кольца с произвольным номером .

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.