Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ



Лабораторная работа № 2.

Изучение структуры и энергетики экосистем

ЦЕЛЬ РАБОТЫ: Изучить структуру экосистемы и компоненты биоценоза, познакомиться с особенностями передачи вещества и энергии в экосистемах между трофическими уровнями.

Освоить методику определения типа распределения особей в пространстве экосистемы.

 

 

Задание к работе :

 

К работе допущен:

 

Работу выполнил:

 

Работу защитил:

 

Ковров. 2010г.


ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Совокупность популяций различных биологических видов, занимающих определенное пространство, формирует биоценоз. Этот термин впервые предложил Мебиус в 1877 г. Поскольку существование любого биоценоза самым непосредственным образом зависит от факторов неживой природы, компонентов среды - рельефа, почвы, водных объектов, климата (составляющихбитоп), то правильней говорить об экосистемах, в состав которых входят популяции.

Каждая популяция характеризуется определенным набором свойств и параметров. Одним из таких свойств является закономерность размещения особей внутри популяции (в целом, можно говорить и о закономерности распределения особей конкретного вида в рамках всего биоценоза). Выделяют три типа распределения особей в пространстве: равномерный (рис. 1 а), дисперсный или случайный (рис. 1 б) и мозаичный (рис. 1 в).

Рис.1.типы распределения особей в пространстве

При равномерном распределении, если проводить экспериментальные замеры (например, отлов животных), количество особей в каждой выборке (группе отловленных животных) будет в среднем равным. В этом случае (с определенными оговорками) можно говорить о случае S2/Ncp → 0, где S - математическая дисперсия, а Ncp - среднее арифметическое количество особей во всех выборках.

В случае S2/Ncp → 1 говорят о случайном распределении особей в популяции, а при условии S2/Ncp > l можно предполагать наличие мозаичного распределение.

Для каждого вида характерен определенный тип распределения, который способствует поддержанию гомеостаза(динамического равновесия) популяции.

По средним значениям количества особей, попавших в выборку можно по специальным методикам определить и примерную численность всей популяции. Зная эту величину и площадь (объем), которую занимает популяция, получают еще одну характеристику - плотность популяции.

Тип распределения и плотность популяции являются важными биологическими и хозяйственными (если речь идет об эксплутационных и экономических свойствах) критериями популяции.

Как уже отмечалось выше, популяции являются составными элементами природных сообществ (экосистем) - биологических систем более высоко уровня, чем популяции. В любом природном сообществе между ее компонентами - отдельными особями, видами, популяциями и т.д. - существует множество функциональных связей. Пищевые или трофические связи является наиболее важными, поскольку они определяют особенности передачи и перераспределение энергии в экосистеме.

Во всех экосистемах энергия передается через трофические сети, состоящие из множества трофических цепей. Организмы, объединенные одним способом получения энергии (питания) формируют трофический уровень (рис. 2).

 

 

Рис. 2 Схематическое изображение трофической сети экосистемы

 

В зависимости от принадлежности к тому или иному трофическому уровню организмы делятся на:

продуценты (производят первичную биологическую продукцию из простых неорганических соединений с помощью энергии света в процессе фотосинтеза или энергии химических связей в процессе хемосинтеза,

консументы (используют в качестве источника энергии первичную или вторичную биологическую продукцию) и

редуценты (преобразуют мертвое органическое вещество в простые неорганические соединения).

Типичными представителями продуцентов являются фотосинтезирующие (зеленые) растения. Консументы в зависимости от принадлежности к трофическому уровню делят на консументов 1-го порядка (например, травоядные животные), 2-го порядка (например, хищники), 3-го порядка (паразиты и сверхпаразиты). Часто по другой классификации количество порядков консументов соответствует количеству занимаемых ими трофических уровней, в этом случае в экосистеме могут присутствовать и консументы 4-го, 5-го и более высоких (очень редко) порядков.

Редуценты представлены преимущественно микроорганизмами (бактериями, грибами др.).

Для наглядности структуру экосистемы представляют не только в виде схемы трофической сети, но ив виде так называемых экологических пирамид. В этом случае, каждый трофический уровень изображается в соответствующем масштабе (в зависимости от количественных значений) в виде прямоугольника (рис. 3).

 

Рис. 3. Различные конфигурации экологических пирамид

 

Существует три типа экологических пирамид: пирамиды энергий(иллюстрирует средние значения энергии, поступающей на каждом трофический уровень), пирамида чисел(изображает численный состав каждого трофического уровня) и пирамида биомасс (представляет значения общей биомассы на каждом трофическом уровне). Два последних типа пирамид являются производными от первого.

Поскольку в любой экосистеме основной поток энергии направлен от нижележащих трофических уровней к вышележащим (обратный отток энергии крайне незначителен и не превышает, в лучшем случае, несколько процентов), пирамиды энергий всегда имеют "прямую" форму (рис. 3 а). Пирамиды чисел и биомасс могут иметь как «прямую»,так и «перевернутую» формы (рис. 3 б).

Передача энергии в экосистемах подчиняется правилу (закону) 10%, согласно которому в среднем на каждый вышележащий трофический уровень передается не более 10% энергии, сосредоточенной на нижележащем трофическом уровне(остальная энергия рассеивается в окружающей среде в виде тепловой энергии).

Знания о трофической структуре экосистемы, особенностях ее энергетики имеют важное прикладное значение, поскольку позволяют прогнозировать тенденции развития ситуаций, планировать необходимые биотехнические мероприятия, например, применительно к нуждам лесного и сельского хозяйств, решать задачи оптимизации получения наибольшей выгоды от эксплуатации экосистемы при условии ее сохранения.

 

ПРИБОРЫ, МАТЕРИАЛЫ

1. ПЭВМ (с операционной системой Windows 98, ME, NT, XP).

2. Компьютерная программа "Экологические пирамиды"

(разработка кафедры БЖД, Э и Х КГТА).

3. Бумага.

4. Карандаши, ручки.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.