Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Отличительные особенности и характеристики фланцев



Существуют определенные характеристики фланцев:

1. Конструктивные.
Основой этой группы характеристик является конструкция фланца. На территории Российской Федерации и стран СНГ наибольшее распространение получили три фланцевых стандарта:

  • ГОСТ 12820-80 — фланец стальной плоский приварной.
  • ГОСТ 12821-80 — фланец стальной приварной встык.
  • ГОСТ 12822-80 — фланец стальной свободный на приварном кольце.

Фланцы по трем наиболее распространенным стандартам, упомянутые выше, предназначены для соединения трубопроводной арматуры и оборудования.
В силу конструктивных особенностей условия монтажа этих фланцев различаются.

Фланец стальной плоский приварной.При монтаже фланец «надевается» на трубу и приваривается двумя сварными швами по окружности трубы.

Фланец стальной приварной встык.Монтаж такого фланца по сравнению с плоским приварным фланцем предусматривает только один соединительный сварной шов (при этом необходимо соединить встык торец трубы и «воротник» фланца), что упрощает работу и сокращает временные затраты.

Стальной свободный фланец на приварном кольцесостоит из двух частей — фланца и кольца. При этом, естественно, фланец и кольцо должны быть одного условного диаметра и давления. Такие фланцы отличаются по сравнению с вышеперечисленными удобством монтажа, т. к. к трубе приваривается только кольцо, а сам фланец остается свободным, что обеспечивает легкую стыковку болтовых отверстий свободного фланца с болтовыми отверстиями фланца арматуры или оборудования без поворота трубы. Они часто используются при монтаже трубопроводной арматуры и оборудования в труднодоступном месте или при частом ремонте (проверке) фланцевых соединений (например, в химической промышленности).

 

Кроме того, положительным является то, что при подборе свободных фланцев под трубу из нержавеющей стали, в целях экономии, допускается использование кольца из нержавеющей стали, а фланца — из углеродистой

Типы фланцев
Наиболее используемые фланцы в нефтяной и химической промышленности:

 

· с шейкой для приварки

· сквозной фланец

· приварной с впадиной под сварку

· приварной внахлест (свободновращающийся)

· резьбовой фланец

· фланцевая заглушка

 

При расчете фланцевых соединений учитывают следующие виды нагрузок:

- усилие затяжки болтов (шпилек);

- внутреннее или наружное давление;

- внешнюю осевую силу;

- внешний изгибающий момент;

- усилия, вызванные стесненностью температурных деформаций элементов фланцевых соединений, включая фланцы, болты (шпильки) и зажатую между фланцами трубную решетку или закладную деталь.

 

39 билет

Фильтрационную аппаратуру по принципу действия можно разделить на две основные группы:

Классификация фильтров. Аппараты, в которых осуществляют процесс фильтрации, называются фильтрами. В зависимости от способа действия различают фильтры периодического и непрерывного действия. В зависимости от вида давления, которым создается движущий напор, необходимый для проталкивания жидкости через поры фильтрующей перегородки, различают:

  1. фильтры, работающие под действием гидростатического давления столба фильтруемой жидкости;
  2. вакуум-фильтры, работающие при разрежении, создаваемом вакуум-насосами;
  3. фильтрпрессы, работающие под давлением, создаваемым при помощи насосов или компрессоров.

В зависимости от типа фильтрующей перегородки все фильтры можно разделить на несколько групп:

  1. фильтры с несвязанной или зернистой перегородкой;
  2. фильтры с тканевой перегородкой;
  3. фильтры с неподвижной жесткой перегородкой.

Выбор той или иной фильтрующей перегородки обусловливается рядом факторов; наиболее существенны химические свойства фильтруемой жидкости, рабочее давление, при котором ведется фильтрация, степень раздробленности твердых частиц фильтруемой смеси и, наконец, требуемая производительность.

Цикл фильтрования состоит из следующих операций: подготовки фильтрата, фильтрование, промывка осадка, выгрузка осадка.

Производительность фильтра зависит главным образом от толщины осадка и возрастает при ее уменьшении. В связи с этим необходимо чаще удалять осадок, чтобы его толщина не возрастала. Однако, частое удаление осадка связано с частым повторением циклов работы и ростом вспомогательного времени, поэтому следует установить оптимальную производительность цикла фильтрования, когда обеспечивается максимальная производительность.

 

К фильтрам периодического действия относятся:

а) нутч-фильтры;

б) друк-фильтры;

в) рамные фильтр-прессы;

г) камерные фильтр-прессы;

д) листовые фильтры.

Периодически действующие фильтры:
а – нутч-фильтр; б – друк-фильтр,

 

Фильтр непрерывного действия характеризуется тем, что подвод суспензии, удаление осадка или отвод сгущенной суспензии осуществляются непрерывно. В фильтрах периодического действия непрерывность операций нарушается

Фильтры непрерывного действия делятся на следующие типы: фильтры с прямой фильтрацией; фильтры с предварительным отстаиванием ( с горизонтальным и вертикальным расположением фильтрующих элементов); фильтры с механическим и гидродинамическим снятием шлама с фильтрующей поверхности и удалением шлама из фильтра

Фильтры непрерывного действия работают, как правило, под вакуумом,

Фильтры непрерывного действия отличаются тем, что стадии фильтрования, промывки, просушки, снятия осадка и другие осуществляются на них последовательно и одновременно. Для этого фильтры снабжаются специальными устройствами, регулирующими очередность и продолжительность каждой стадии процесс

К непрерывно действующим фильтрам относятся:

а) барабанные вакуум-фильтры;

б) барабанные фильтры, работающие под давлением;

в) дисковые фильтры;

г) ленточные фильтры;

д) тарельчатые вакуум-фильтры;

е) карусельные фильтры.

 

 

Адсорбция (лат. ad — на, при; sorbeo — поглощаю) — увеличение концентрации растворенного вещества у поверхности раздела двух фаз (твердая фаза-жидкость, конденсированная фаза - газ) вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции - десорбция.

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое — адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) — адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы)

Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то адсорбция наз. физической, если валентные (т.е. адсорбция сопровождается образованием поверхностных хим. соединений), - химической, или хемосорбцией. Отличит.черты хемосорбции - необратимость, высокие тепловые эффекты (сотни кДж/моль),активированный характер. Между физ. и хим. адсорбцией существует множество промежут.случаев (напр., адсорбция, обусловленная образованием водородных связей). Возможны также разл. типы физ. адсорбции наиб. универсально проявление дисперсионных межмол.сил притяжения, т. к. они приблизительно постоянны для адсорбентов с пов-стью любой хим. природы (т. наз. неспецифич. адсорбция). Физ. адсорбция может быть вызвана электростатич. силами (взаимод. между ионами, диполями или квадруполями);при этом адсорбция определяется хим. природой молекул адсорбтива (т. наз. специфич.адсорбция).

Применение

Адсорбция — всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма — активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Адсорбция (особенно хемосорбция) имеет также важное значение в гетерогенном катализе. Пример адсорбционных установок приведён на странице азотные установки.

Установка для проведения адсорбции называется адсорбером.

 

 

Средний температурный напор — температурный напор, осреднённый по поверхности теплообмена.

Произведение значения температурного напора на коэффициент теплопередачи определяет количество теплоты, передаваемое от одной среды к другой через единицу поверхности нагрева в единицу времени, то есть плотность теплового потока.

Определение среднего температурного напора Д / необходимо при конструктивном тепловом расчете для нахождения поверхности теплообмена. По средним температурам теплоносителей из справочников находят значения физических констант, необходимые для подсчета коэффициентов теплоотдачи. Конечные же температуры теплоносителей определяют при поверочных расчетах аппаратов. Средний температурный напор, распределение температур теплоносителей, средние и конечные их температуры зависят в общем случае от схемы движения теплоносителей и отношения их водяных эквивалентов.

Определение среднего температурного напора А / необходимо при конструктивном тепловом расчете для нахождения поверхности теплообмена. По средним температурам теплоносителей из справочников находят значения физических констант, необходимые для подсчета коэффициентов теплоотдачи. Конечные же температуры теплоносителей определяют при поверочных расчетах аппаратов. Средний температурный напор, распределение температур теплоносителей, средние и конечные их температуры зависят в общем случае от схемы движения теплоносителей и отношения их водяных эквивалентов.

Определение среднего температурного напора при сушке осложняется тем, что процесс происходит при переменном температурном режиме газовой среды. Температура материала непрерывно изменяется и зависит не только от параметров среды, но и от влажности материала.

Для определения среднего температурного напора необходимо знать конечную температуру воды, которая неизвестна.

Для определения среднего температурного напора необходимо знать конечную температуру холодного воздуха, которая неизвестна.

Для определения среднего температурного напора между частицами и средой в кипящем слое необходимо знать изменение температуры среды по высоте слоя, которая, как установлено в ряде работ, изменяется по экспоненциальному закону, а интенсивность ее изменения в свою очередь зависит от интенсивности теплообмена.

Для определения среднего температурного напора ТСр необходимо знать температуру сырья на выходе из камеры конвекции к - Предварительное значение этой температуры уже определялось при расчете камеры радиации, теперь следует его уточнить.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.