Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Глава 3. Усталостная прочность фланцевых соединений растянутых элементов



Исследованиями усталостной прочности фланцевых соединений растянутых элементов конструкций занимались Каленов В. В., Соскин А. Г. и Евдокимов В. В. [5]. Ими были представлены результаты экспериментальных исследований циклической долговечности монтажных фланцевых соединений элемен­тов конструкций, воспринимающих циклически изменяющиеся, растя­гивающие нагрузки. Получены расчетные кривые усталости высоко­прочных болтов и сварных соединений фланцев с профилем. Показа­но, что циклическую долговечность соединений следует определять по амплитуде номинальных напряжений. При этом, в качестве рас­четного должно быть принято наименьшее значение долговечности, полученное для болтов, или сварных соединений с различными типами исполнения и дефектами швов.

В период эксплуатации фланцевые соединения воспринимают как ста­тические, так и циклические воздействия.

В одной из первых работ, посвященных исследованию характеристик сопротивления усталости ФС, приведены результаты испытаний 12 двухбайтовых Т-образных соединений. Получены кривые усталости болтов А325 и А490, установленных с усилием предварительного на­тяжения То — (0,7 + 0,8) Tu., где Тu — разрушающее усилие болтов при растяжении. Сделан вывод о том, что высокая долговечность болтов может быть обеспечена высоким уровнем То, чтопри прочих равных условиях ведет к значительному уменьшению амплитуды переменных напряжений в болтах. Также приведены исследования усталост­ной долговечности высокопрочных болтов М22 типа F9T и FIIT, работающих в составе ФС. Опытные соединения испытывали сериями из 6+13 образцов с одинаковыми геометрическими характеристика­ми. Показано, что долговечность болтовой группы в значительной степени зависит от величины предварительного натяжения болтов. Следует отметить, что испытанные болты по механическим свойствам и химическому составу существенно отличаются от отечественных.

Для этих и других исследований характерно, что циклическую долговечность ФС в целом определяют, главным образом, сопротивлением усталости болтов. Вместе с тем, очевидно, что не менее опасным с точки зрения усталостного разрушения ФС являются сварные соединения фланцев с профилем.

В этой связи авторами исследования был выполнен комплекс исследований, целью которых являлось изучение закономерностей сопротивления усталости ФС элементов конструкций, воспринимающих циклические растягивающие нагрузки и разработка инженерной методики расчета ФС на усталость. Исследования предусматривали с одной стороны – построение расчетной кривой усталости для болтов, учтановленных с высоким уровнем предварительного натяжения В0 = 0,9Вр, с другой – построение построение расчетных кривых усталости для сварных соединений ФС с различными типами исполнения (бездефектными и с дефектами) швов, выполненных в соответствии с ГОСТ 5264-69, ГОСТ 14771-76, ГОСТ 8713-70 и СНиП 3.03.01-87 (с разделкой и без разделки кромок, с подрезом, с механической обработкой и т.д.).

На рис. 4 показаны подготовленные для испытания на усталость модели и натурные образцы опытных ФС (всего 6 серий). 1 серия – 12 одноболтовых ФС, вторая – 13 Т-образных двухболтовых ФС. Сварное соединение стенки с фланцем выполняли вручную, с разделкой кромок (угол фаски — 50°, притупление – 2мм) электродами марки УОНИ – 13/55 по ГОСТ 9467-75, третья серия – 7 образцов тавровых сварных соединений без разделки кромок, четвертая – то же с разделкой кромок. Пятая серия – 4 соединения крулых труб 168х8 мм, усиленных ребрами жесткости толщиной 10 мм . Фланцы толщиной 22 и 25 мм. Шестая серия – 6 ФС широкополочных тавров 150х96х13х10 мм с фланцами толщиной 25 мм. Материал фланцев и соединяемых элементов опытных образцов – стали с расчетным сопротивлением растяжению, сжатию, изгибу по пределу текучести от 225 до 400 МПа (09Г2С, 10Г2С1, 16Г2АФ) по ГОСТ 19282-73,

Рис.4. Схемы моделей и опытных образцов ФС.

ГОСТ 19281-73. Болты высокопрочные М24 из стали 40Х «Селект» с временным сопротивлению разрыву не менее 1100 МПа Сварка ручная. Расчетное сопротивление угловых сварных швов срезу по металлу шва 215 МПа. Измерение относительных деформаций (напряжений) в болтах при количестве циклов нагружения N=1,5,1000,10000 осуществляли тензометрированием.

На рис. 5 представлена зависимость между амплитудой номинальных упругих напряжений в болтах различных серий опытных соединений и их циклической долговечностью N. Для аналитического выражения расчетной кривой усталости по параметру среднего напряжения цикла = 727 МПа использовано уравнение Веллера . Полученное методами математической статистики уравнение нижней огибающей трехстандартного диапозона долговечности болтов ФС имеет вид

(1)

Средне-квадратическое отклонение по lg N равно 0, 256; коэффициент корреляции — 0,91. Как следует из графика, усталостное разрушение болтов, предварительно напряженных на усилие В0 = (0,8+1,0) Вр, происходит в области малоцикловой и ограниченней усталости в диапазоне от 104 до циклов нагружения. При этом, максимальные внешние нагрузки вызывают усилия в болтах приблизительно равные Вр.

Рис.5. Циклическая долговечность и кривые усталости высокопрочных болтов опытных соединений.

На рис.6 показаны экспериментальные точки, отражающие зависимость циклической долговечности сварных соединений опытных образцов различных серий с разделкой и без разделки кромок от эквивалентной амплитуды номинальных напряжений – в соединяемых элементах. Для определения использована зависимость С. В Серенсена

(2)

, где - среднее напряжение цикла в соединяемых элементах;

- коэффициент чувствительности материала к асимметрии цикла нагружения. Для низколегированных сталей принят равным 0,25.

Рис.6. Циклическая долговечность и кривые усталости сварных соединений фланцев с профилем опытных образцов различных серий;

а — соединения с разделкой кромок, б – без разделки.

На этом же графике пунктирными линиями обозначены экспериментальные кривые усталости, а сплошными линиями – границы трехстандартного диапазона рассеивания возможных значений долговечности сварных соединений ФС. Нижние огибающие диапазонов приняты за расчетные кривые усталости (рис.7, кривые 2,4). Аналогичным образом на основе экспериментальных исследований получены расчетные кривые усталости №№1,3,5, математическое выражение которых имеет вид

 

На основе результатов исследований разработана инженерная методика расчета на усталость ФС элементов конструкций, воспринимающих циклические растягивающие нагрузки. Циклическую долговечность соединений исследуемых конструктивных форм следует определять как наименьшую из расчетных значений по болтам и сварным соединениям фланцев с профилем. Расчет рекомендуется проводить по амплитуде номинальных напряжений цикла с использованием представленных выше расчетных кривых усталости и уравнений (1)-(7).

Рис.7. Расчетные кривые усталости

сварных соединений фланцев с профилем;

1- с разделкой кромок и последующей

механической обработкой сварного шва;

2 - с разделкой и без обработки;

3 – то же с подрезом шва;

4 – без разделки кромок с необработанным швом.

5 – то же с подрезом шва.

Доктором технический наук В. В. Бирюлевым был рассмотрен вопрос конструирования и расчета балок с фланцевыми стыками [6].

Монтажные стыки как в обычных, так и в облегченных балках имеют три конструктивных решения — сварные (без накладок и с накладками), сдвигоустойчивые (с накладками на сдвигоустойчивых высокопрочных болтах), фланцевые (на высоко­прочных болтах).

Сварные стыки без накладок наименее металлоемки, но тре­буют значительных затрат труда высококвалифицированных свар­щиков. Кроме того, при сварке стыков в холодное время года необходимо проводить дополнительные мероприятия для обеспе­чения качества и надежности соединений.

Сдвигоустойчивые соединения менее трудоемки в изготовлении, не требуют высокой квалификации монтажников, проще выпол­няются при низких температурах, более надежны в работе при динамических и циклических нагрузках, так как не создают кон­центраций напряжений и остаточных температурных напряжений, как сварные швы.

Фланцевые соединения, в свою очередь, имеют ряд преиму­ществ по сравнению со сдвигоустойчивыми. Во фланцевых стыках уменьшается расход металла на соединение, в 3 … 3,5 раза сни­жается количество болтов (в сдвигоустойчивых соединениях болты ставятся с двух сторон и нагружены одинаково в сжатой и растянутой зонах, несущая способность на сдвиг меньше несу­щей способности на растяжение. Количество болтов в сжатой зоне во фланцевых соединениях может быть уменьшено, поскольку нормальных усилий они не передают, а только обеспечивают передачу поперечных сил за счет трения поверхностей фланцев. Основное количество болтов сосредоточено в зоне растянутого пояса, причем болты работают с большей отдачей, чем при сдвиге. Отсюда следует, что трудоемкость монтажа фланцевых соединений снижается в 3,5 … 4 раза. Кроме того, уменьшается трудоемкость изготовления балок, главным образом за счет резкого сокращения числа отверстий в стенке и поясах.

Болты во фланцевых стыках устанавливаются на одинаковом расстоянии или концентрируются в растянутой зоне у пояса. Толщина и ширина фланца в этом месте иногда увеличиваются, причем часть фланца в растянутой зоне выполняется из более прочной стали, а в сжатой малонагруженной растянутой зонах — из малоуглеродистой стали. При мощных поясах количество болтов с каждой стороны стенки в ряду доводится до 3 … 4 штук.

При расчете фланцевого соединения должна быть проверена прочность в четырех зонах — в высокопрочных болтах, во флан­цах, в сварных швах, прикрепляющих фланцы, в основном сечении балок у сварных швов. Во фланцах проверяется прочность при их изгибе, а также при возможном поверхностном отрыве в около­шовной зоне.

Весьма приближенный расчет фланцевого соединения в балках ведется из предположения, что усилия в болтах распределяются пропорционально расстоянию от точки приложения равнодей­ствующей силы в сжатой зоне, например от центра сжатого пояса до болта. Тогда усилие в наиболее напряженном край­нем болте будет

где — расстояние до i-ro ряда и до крайнего ряда болтов; — ко­личество болтов в i-м и крайнем ряду; m — число рядов.

Такое распределение усилий может быть только при очень толстых фланцах.

Действительная работа фланцев сложна. Если во фланце вырезать полоску, то ее можно представить как своеобразную балку, находящуюся под действием системы сил Pf, Nb, V. Сила Pf передается от балки (стенки или пояса) на фланец, Nb — это сила, которая возникает в болте после приложения внешней нагрузки. Силу V обычно называют рычажной. Это — равнодействующая, возникающая от совместного при­жатия двух фланцев друг к другу; положение равнодействующей зависит от ряда факторов, в первую очередь от толщины фланцев.

Если представить себе, что фланец не деформируется, то под нагрузкой возникает изгибающий момент (у стенки или полки), равный Nbc. Наличие рычажной силы уменьшает величину этого момента, следовательно, требуемую толщину фланца. Влияние рычажной силы учитывается при расчете фланцевых соединений.

Имеется предложение использовать резервы несущей способ­ности фланцевого соединения, если допустить развитие пласти­ческих деформаций в сечении балки и во фланцах и применить для их оценки метод предельного равновесия.

Определяемая толщина фланца в этом случае будет минималь­ной. К тому же развитие пластических деформаций во фланцах вызовет повышение прогиба балки, как свидетельствуют экспери­менты, на 5… 15%. Поэтому до накопления дополнительных экспериментальных данных такой метод можно использовать для расчета фланцевых соединений лишь в малоответственных кон­струкциях.

Предполагается, что с деформируемой поверхности фланца на сечение балки, примыкающей к нему, передаются реактивные усилия, ограниченные в сжатой зоне сопротивлением металла балки Ru, а в растянутой зоне предельным усилием, необходимым для образования пластического механизма в расчетной полоске фланца. Принято, что полоска жестко защемлена по линии размещения болтов и эти полоски у стенки и полки балки работают независимо.

До начала расчета устанавливаются: размеры фланцев с уче­том габаритов балок, диаметр высокопрочных болтов, минималь­ное количество болтов, необходимое для восприятия растягива­ющего усилия пояса двутавра. Болты размещаются на минимально возможных расстояниях от полок и стенок.

Алгоритм расчета представлен на рис. 8. Дополнительно к обозначениям на рис.8 : — коэффициент нагруженности двутавра изгибающим моментом; — значение , при котором в стенке двутавра развиваются пластические деформации; — относительная высота сжатой зоны соединения; — значение , при котором нейтральная ось соединения перемещается в сжатую полку двутавра; — отношения величины напряжений, действующих соответственно в растянутой и в сжатой полках, в растянутой зоне стенки, к Ry стали дву­тавра; расчетные пролеты фланца соответственно поперек полки и стенки:

— расстояния между осями болтов соответственно поперек полки и стенки; — катет углового сварного шва, при­крепляющего фланец соответственно к полке или к стенке дву­тавра; — диаметр болта.

Толщина фланца определяется по формуле

 

коэффициент k принимается по табл. 2.8. В этой же таблице указано минимальное расстояние от оси болтов до края фланца , при котором обеспечивается рычажный эффект.

Найденная по (9) толщина фланца будет минимальная. Если же вести расчет по упругой стадии работы фланца, то, есте­ственно, толщину его потребуется увеличить. При передаче флан­цевым соединением, кроме изгибающего момента, еще и поперечной силы следует выполнить дополнительные расчеты.

Рис. 8 Блок-схема расчета фланцевого соединения на изгиб с учетом различия деформаций.

Необходимое минимальное количество болтов в зоне растяну­той полки:

Заключение

Подводя итоги, можно заметить, что в области исследования фланцевых соединений скрывается еще много вопросов и одним из них является вопрос о динамической выносливости фланцевых соединений при разнозначных видах нагружения и применения их при устройстве подкрановых балок.

 

Билет

Степень превращения

Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству.

Для простейшей реакции

,[1]

где - концентрация на входе в реактор или в начале периодического процесса,

- концентрация на выходе из реактора или текущий момент периодического процесса.

Для произвольной реакции, например,

,

в соответствии с определением расчетная формула такая же:

.

Если в реакции несколько реагентов, то степень превращения можно считать по каждому из них, например, для реакции

Зависимость степени превращения от времени реакции определяется изменением концентрации реагента от времени. В начальный момент времени, когда ничего не превратилось, степень превращения равна нулю. Затем, по мере превращения реагента, степень превращения растет. Для необратимой реакции, когда ничто не мешает реагенту израсходоваться полностью, ее значение стремится (рис.1) к единице (100%).

 

Рис.1

 

Чем больше скорость расходования реагента, определяемая значением константы скорости, тем быстрее растет степень превращения, что представлено на рисунке.

Если реакция обратимая , то при стремлении реакции к равновесию степень превращения стремится к равновесному значению, величина которого зависит от соотношения констант скоростей прямой и обратной реакции (от константы равновесия) (рис.2).

 

Рис.2

 

 

Выход целевого продукта

 

Выход продукта – количество реально полученного целевого продукта, отнесенное к количеству этого продукта, которое получилось бы, если бы весь реагент перешел в этот продукт (к максимально возможному количеству получившегося продукта).

Или (через реагент): количество реагента, реально перешедшего в целевой продукт, отнесенное к исходному количеству реагента.

Для простейшей реакции выход , а имея в виду, что для этой реакции , , т.е. для простейшей реакции выход и степень превращения – это одна и та же величина. Если превращение проходит с изменением количества веществ, например, , то в соответствии с определением стехиометрический коэффициент должен войти в расчетное выражение. В соответствии с первым определением воображаемое количество продукта, получившегося из всего исходного количества реагента, будет для этой реакции в два раза меньше, чем исходное количество реагента, т.е. , и расчетная формула . В соответствии со вторым определением количество реагента, реально перешедшее в целевой продукт будет в два раза больше, чем образовалось этого продукта, т.е. , тогда расчетная формула . Естественно, что оба выражения одинаковы.

Для более сложной реакции расчетные формулы записываются точно так же в соответствии с определением, но в этом случае выход уже не равен степени превращения. Например, для реакции[2] , .

Если в реакции несколько реагентов, выход может быть рассчитан по каждому из них, если к тому же несколько целевых продуктов, то выход можно считать на любой целевой продукт по любому реагенту.

Как видно из структуры расчетной формулы (в знаменателе находится постоянная величина), зависимость выхода от времени реакции определяется зависимостью от времени концентрации целевого продукта. Так, например, для реакции эта зависимость выглядит как на рис.3.

 

Рис.3

 

Селективность(избирательность)

 

Определение селективности отличается от определения выхода только одним словом. Если в определение выхода входит понятие «общее исходное количество реагента», в случае селективности оно заменяется на «количество прореагировавшего реагента».

Селективность – количество реально полученного целевого продукта, отнесенное к количеству этого продукта, которое получилось бы, если бы весь прореагировавший реагент перешел в этот продукта.

Или (через реагент): количество реагента, реально перешедшего в целевой продукт, отнесенное к количеству прореагировавшего реагента. Количество прореагировавшего реагента определяется разностью концентраций реагента в начале реакции и в текущий момент времени (на входе в реактор и на выходе из него),т.е. .

Для простейшей реакции селективность , а имея в виду, что для этой реакции , , т.к. в простейшей реакции нет побочных продуктов. Если превращение проходит с изменением количества веществ, например, , то в соответствии с определением стехиометрический коэффициент должен войти в расчетное выражение. В соответствии с первым определением воображаемое количество продукта, получившегося из прореагировавшего количества реагента, будет для этой реакции в два раза меньше, чем прореагировавшее количество реагента, т.е. , и расчетная формула . В соответствии со вторым определением количество реагента, реально перешедшее в целевой продукт будет в два раза больше, чем образовалось этого продукта, т.е. , тогда расчетная формула . Естественно, что оба выражения одинаковы.

Для более сложной реакции расчетные формулы записываются точно так же в соответствии с определением, но в этом случае селективность уже не равна единице. Например, для реакции , .

Если в реакции несколько реагентов, селективность может быть рассчитан по каждому из них, если к тому же несколько целевых продуктов, то селективность можно считать на любой целевой продукт по любому реагенту.

В отличие от выхода и степени превращения структура расчетной формулы селективности более сложная. Во времени реакции меняется как числитель этой формулы, так и знаменатель. Поэтому зависимость этой характеристики от времени реакции требует более глубокого обсуждения. Первым делом надо ответить на вопрос, чему равна селективность в начале реакции (при t=0). Для степени превращения и выхода ответ на этот вопрос очевиден: для степени превращения в нулевой момент времени текущая концентрация реагента равна начальной и =0, значение выхода при нулевой концентрации целевого продукта в начале реакции[3] и при постоянном значении знаменателя расчетной формулы равно нулю. Если же проанализировать расчетную формулу для селективности, например, для последовательной реакции , станет понятным, что здесь нет очевидного ответа, так как и числитель и знаменатель этого выражения равны нулю. Из математики известно, что такое отношение равно неопределенности и для раскрытия неопределенности надо провести дополнительный анализ этой ситуации. Суть этого анализа состоит в том, что нужно немного отступить от нулевого значения времени (строго говоря, на бесконечно малую величину) и посмотреть, чему теперь будет равняться отношение числителя и знаменателя. Очевидно, что за очень маленькое время какое-то, пусть очень маленькое количество продукта образуется и количество реагента, перешедшее в целевой продукт (по определению) уже не равно нулю. Знаменатель (общее количество прореагировавшего реагента) тоже не равен нулю, хотя и очень мал. Теперь остается сравнить эти две малые величины. Глядя на уравнение реакции, о которой мы говорим, легко сообразить, что в начальный момент, когда второго вещества образовалось очень мало, количество третьего вещества будет еще намного меньше (количество образовавшегося третьего вещества зависит от скорости его образования, которая в свою очередь определяется очень малой концентрацией второго вещества) и им можно пренебречь. В этом случае станет ясно, что количество реагента, перешедшего в целевой продукт (числитель) и общее количество прореагировавшего реагента (знаменатель) равны между собой, и значение селективности в нулевой момент времени равно единице. Далее с течением времени реакции побочный продукт накапливается и селективность уменьшается (рис.4).

 

Рис.4

 

Для параллельной реакции рассуждение о том, чему равна селективность в нулевой момент будут такими же, как для последовательной реакции, но только до того момента, когда мы захотим пренебречь концентрацией побочного продукта ( ). Для параллельной реакции этого сделать нельзя, так как побочный продукт образуется непосредственно из реагента и его количество будет соизмеримо с количеством целевого продукта. Так что, количество реагента, перешедшее в целевой продукт, будет всегда меньше, чем общее количество прореагировавшего реагента, так что селективность в нулевой момент времени будет меньше единицы. Реальное значение начальной селективности зависит от соотношения констант скоростей основной и побочной реакции.

Анализ зависимости селективности от времени также отличается от аналогичного анализа для последовательной реакции. Здесь также образуется побочный продукт, но целевой не расходуется, скорости образования целевого и побочного продуктов меняются во времени одинаково (в случае равенства порядков основной и побочной реакции) и селективность остается постоянной во времени.

Можно заметить, что три рассматриваемые характеристики взаимосвязаны, например, для последовательной реакции , анализируя расчетные формулы для степени превращения, выхода и селективности , , , легко увидеть, что селективность и степень превращения всегда больше выхода, можно вывести простое соотношение между этими величинами. С учетом этого зависимость от времени этих трех характеристик для рассматриваемой реакции будет выглядеть как на рис.5.

 

Рис.5

 

В ходе теоретического анализа надо на время забыть все практические аспекты проведения работы, такие как тип и конструкцию реактора, характер теплообмена и т.д., и рассматривать только химическую реакцию. Тогда задача теоретического анализа данной работы может быть поставлена следующим образом:

Дана обратимая экзотермическая реакция:

к1

А1 А2 + Q

к2

 

ПСЕВДООЖИЖЕНИЕ, превращение слоя зернистого материала под влиянием восходящего газового или жидкостного потока либо иных физ.-мех. воздействий в систему, твердые частицы к-рой находятся во взвешенном состоянии, и напоминающую по св-вам жидкость,-псевдоожиженный слой. Из-за внеш. сходства с кипящей жидкостью псевдоожиженный слой часто наз. кипящим слоем. В англоязычной литературе принят термин :fluid bed: (ожиженный слой), а операция псевдоожижения носит назв. :fluidiration:.

В качестве наиболее простого обыденного примера применения псевдоожижения можно привести аппарат для приготовления попкорна. Зёрна попкорна, стандартизировванные и почти одинаковые по массе и форме, зависают в потоке горячего воздуха, поднимающегося со дна камеры. Интенсивное перемешивание частиц попкорна, подобно перемешиванию кипящей жидкости, позволяет выровнять температуру по всему объёму камеры, мнимизируя количество подгоревших зёрен. После «взрыва», теперь уже увеличенные зёрна под действием сил аэродинамического лобового сопротивления поднимаются наверх, и выталкиваются во внешнюю ёмкость, в то время как «не взорвавшиеся» зёрна движутся на дно камеры.

Процесс псевдоожижения используется для обогащения полезных ископаемых в кипящем слое.

 

Псевдоожижение

превращение слоя зернистого материала под влиянием восходящего газового или жидкостного потока либо иных физ.-мех. воздействий в систему, твердые частицы к-рой находятся во взвешенном состоянии, и напоминающую по св-вам жидкость,-псевдоожижен-ный слой. Из-за внеш. сходства с кипящей жидкостью псевдоожиженный слой часто наз. кипящим слоем. В англоязычной литературе принят термин :fluid bed: (ожиженный слой), а операция П. носит назв. :fluidiration:.

Некоторые основные понятия. Типы и способы создания псевдоожиженных систем. Простейшую псевдоожиженную систему создают в заполненном слоем зернистого материала вертикальном аппарате, через днище к-рого равномерно по сечению вводят инертный ожижающий агент (газ или жидкость). При его небольшой скорости Wзернистый слой неподвижен; с ее увеличением высота слоя начинает возрастать (слой расширяется). Когда W достигает критич. значения, при к-ром сила гидравлич. сопротивления слоя восходящему потоку ожижающего агента становится равной весу твердых частиц, слой приобретает текучесть и переходит в псевдоожиженное состояние. Соответствующую линейную скорость ожижающего агента наз. скоростью начала П. или его первой критической скоростью Wk[для мелких (размер 0,1 мм) частиц Wk< ~ d2, для крупных ( 1 мм) Ч Wk~ где d- диаметр частиц].

Последняя уменьшается с увеличением плотности восходящего потока.

При дальнейшем возрастании Wгидравлич. сопротивление слоя остается постоянным, пока он не разрушится и не начнется интенсивный вынос зернистого материала потоком из аппарата. Отвечающая данному состоянию слоя скорость потока наз. скоростью уноса (своб. витания частиц) или второй критической скоростью П. (W ун), превышающей Wk в десятки раз. Если скорость ожижающего агента больше скорости витания самых крупных частиц сжижаемого материала, слой полностью увлекается потоком (см. Пневмо- и гидротранспорт).

По мере увеличения W порозность слоя (доля объема, занятого ожижающим агентом) возрастает, поэтому средние концентрации твердых частиц в единице объема слоя уменьшаются. При этом в случае П. газом появляются подвижные полые неоднородности-пузыри (неоднородный слой). При П. жидкостью слой, расширяясь, остается существенно более однородным по локальным концентрациям частиц (однородный слой). В случае П. газом при повыш. давлениях создают псевдоожиженный слой промежут. типа.

Разновидность псевдоожиженного слоя-фонтанирующий слой. В данном случае газ (жидкость) вводят в ниж. часть зернистого слоя в виде струи. Твердые частицы подхватываются ею и выносятся в верх. часть слоя. На периферии струи (обычно у стенок аппарата) сверху вниз движется плотный слой частиц, т. е. они непрерывно циркулируют. В фонтанирующем слое во взвешенном состоянии находится лишь часть твердых частиц. Поэтому иногда используемый термин "взвешенный слой" менее универсален, чем термин "псевдоожиженный слой".

В ряде случаев обеспечивают пульсац. подачу ожижаю-щего агента или вводят его попеременно в разл. участки ниж. сечения слоя. Напр., вращают газораспределит. решетку, перфорированную лишь в нек-рых секторах. Данный прием позволяет привести зернистый слой в псевдоожижен-ное состояние при меньших расходах сжижающего агента по сравнению с обычным кипящим слоем.

Широкое распространение получил также трехфазный слой: твердые частицы взвешиваются жидкостью, к-рая в свою очередь перемешивается пузырьками барботирую-щего газа . Известна разновидность трехфазного слоя: поток жидкости подается сверху вниз со скоростью, равной или большей скорости всплытия твердых частиц, плотность к-рых меньше плотности жидкости; при этом барботаж газа приводит к перемешиванию твердых частиц в объеме жидкости. Несмотря на внеш. сходство с обычным псевдоожиженным слоем трехфазный слой ближе по св-вам к барботажному слою.

Псевдоожиженные системы создают также след. способами: 1) подвергают зернистый слой воздействию мех. вибраций ;2) механически перемешивают зернистый слой, напр. вращением заполненного им аппарата; 3) подвергают твердые частицы, обладающие ферромагн. св-вами, воздействию электромагн. поля и др. Эти и иные приемы могут совмещаться с П. газом или жидкостью.

Далее для удобства изложения материала рассматривается только наиб. распространенный случай-П. газом.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.