Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Классификация химических процессов



До настоящего времени нет еще какой-либо вполне установившейся классификации процессов химической технологии. Практически целесообразно объединять их в зависимости от основных закономерностей, характеризующих протекание процессов, в следующие группы:

1. гидродинамические процессы; включают перемещение жидкостей, разделение суспензий, перемешивание. Для перемещения жидких реагентов и промежуточных продуктов используют различные насосы: поршневые, центробежные, струйные и др. Суспензии разделяют отстаиванием, фильтрованием.

2тепловые процессы; изменение макроскопического состояния термодинамической системы.

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

2.

3диффузионные процессы; изменение макроскопического состояния термодинамической системы.

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

3. холодильные процессы; обеспечивают непрерывное искусств, охлаждение разл. в-в (тел) путем отвода от них теплоты. Естеств. охлаждение с помощью холодной воды иливоздуха позволяет охладить в-во до т-ры охлаждающей среды и не требует подвода энергии. Охлаждение до более низких т-р происходит в искусств. холодных средах, на создание к-рых расходуется мех., тепловая или хим. энергия

4. механические процессы, связанные с обработкой твердых тел;

5. химические процессы, связанные с химическими превращениями обрабатываемых материалов.

Процессы подразделяются также на:

1. периодические,

2. непрерывные,

3. комбинированные.

Периодический процесс характеризуется единством места протекания отдельных его стадий и неустановившимся состоянием во времени. Периодические процессы осуществляют в аппаратах периодического действия, из которых конечный продукт выгружается полностью или частично через определенные промежутки времени. После разгрузки аппарата в него загружают новую порцию исходных материалов, и производственный цикл повторяется снова. Вследствие неустановившегося состояния при периодическом процессе в любой точке массы обрабатываемого материала или в любом сечении аппарата отдельные физические величины или параметры (например, температура, давление, концентрация, теплоемкость, скорость и Др.), характеризующие процесс и состояние веществ, подвергающихся обработке, меняются во время протекания процесса.

Непрерывный процесс характеризуется единством времени протекания всех его стадий, установившимся состоянием и непрерывным отбором конечного продукта. Непрерывные процессы осуществляют в аппаратах непрерывного действия. Вследствие установившегося состояния в любой точке массы обрабатываемого материала или в любом сечении непрерывно действующего аппарата физические величины или параметры в течение всего времени протекания процесса остаются практически неизменными.

Комбинированный процесс представляет собой либо непрерывный процесс, отдельные стадии которого проводятся периодически, либо такой периодический процесс, одна или несколько стадий которого проводятся непрерывно. Непрерывные процессы имеют ряд существенных преимуществ по сравнению с периодическими и комбинированными. К таким преимуществам в первую очередь относятся:

1. возможность осуществления полной механизации и автоматизации, что позволяет сократить до минимума применение ручного труда;

2. однородность получаемых продуктов и возможность повышения их качества;

3. компактность оборудования, необходимого для осуществления процесса, что позволяет сократить как капитальные затраты, так и расходы на ремонт.

Поэтому в настоящее время во всех отраслях техники стремятся перейти от периодических к непрерывным производственным процессам.

 

26. Обобщенный метод технологического расчета первичных отстойников заключается в выборе типа и необходимого числа типовых сооружений, обеспечивающих требуемый эффект осветления.

Имеется многометодов технологического расчета горизонтальных отстойников, которые основаны на эмпирических зависимостях и экспериментально полученных коэффициентах. В основу этих формул положена зависимость, связывающая продолжительность отстаивания, необходимую для получения требуемого эффекта осветления сточных вод, и скорость осаждения ( всплытия) тех частиц, которые должны быть задержаны в отстойнике.

Из большого числаметодов технологического расчета отстойников я предложенных для этого расчетных формул прогрессивными являются лишь те из них, которые позволяют наиболее полно учитывать действительные условия осаждения и взаимосвязь между основными расчетными параметрами. Этому требованию удовлетворяют формулы, связывающие продолжительность отстаивания, необходимую для получения требуемого эффекта осветления сточных вод, и скорость осаждения тех частиц, которые должны быть задержаны в отстойнике.

Из большого числаметодов технологического расчета отстойников и предложенных для этого расчетных формул прогрессивными являются лищь те из них, которые позволяют наиболее полно учитывать действительные условия осаждения и взаимосвязь между основными расчетными параметрами. Этому требованию удовлетворяют формулы, связывающие продолжительность отстаивания, необходимую для получения требуемого эффекта осветления сточных вод, и гидравлическую крупность тех частиц, которые должны быть задержаны в отстойнике.

 

27. В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа В интервале температур от 0оС до 100оС при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза:

Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза.

Уравнение, которое описывает это правило следующее:

где — скорость реакции при температуре , — скорость реакции при температуре , — температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа применимо только для реакций с энергией активации 60-120 кДж/моль в температурном диапазоне 10-400oC. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса. устанавливает зависимость константы скорости химической реакции от температуры .Согласно простой модели столкновений химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекулэтих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённый энергетический барьер, чтобы молекулы начали друг с другом реагировать. То есть молекулы должны обладать некой минимальной энергией (энергия активации ), чтобы этот барьер преодолеть. Из распределения Больцмана для кинетической энергии молекул известно, что число молекул, обладающих энергией , пропорционально . В результате скорость химической реакции представляется уравнением, которое было получено шведским химиком Сванте Аррениусом из термодинамических соображений:

Здесь характеризует частоту столкновений реагирующих молекул, — универсальная газовая постоянная.

 

28.

Экстра́кция (от лат. extraho — извлекаю) — метод извлечения вещества из раствора или сухой смеси с помощью подходящего растворителя (экстраге́нта). Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе.

Экстракция может быть разовой (однократной или многократной) или непрерывной (перколя́ция).

Простейший способ экстракции из раствора — однократная или многократная промывка экстрагентом в делительной воронке.Делительная воронка представляет собой сосуд с пробкой и краном для слива нижнего слоя жидкости. Для непрерывной экстракции используются специальные аппараты — экстракторы, или перколяторы.

Для извлечения индивидуального вещества или определённой смеси (экстракта) из сухих продуктов в лабораториях широко применяется непрерывная экстракция по Сокслету.

В лабораторной практике химического синтеза экстракция может применяться для выделения чистого вещества из реакционной смеси или для непрерывного удаления одного из продуктов реакции из реакционной смеси в ходе синтеза.

Экстракция применяется в химической, нефтеперерабатывающей, пищевой, металлургической, фармацевтической и других отраслях, в аналитической химии и химическом синтезе.

 

 

29. Технологический процесс — это часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. К предметам труда относят заготовки и изделия.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.