Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ЗАГРЯЗНЕНИЕ ПОВЕРХНОСТЕЙ НАГРЕВА



В процессе работы котла возникает загрязнение внешних поверхностей нагрева. При условии Тгпл основная часть уноса за топкой находится в твердом состоянии (Тг — температура газов, Тпл — температура плавления золы). На экранах и ширмах топки, работающей на пылевидном твердом топливе, возможны отложения шлака. Эти отложения образуются при температуре газов на выходе из топки более высокой, чем температура размягчения золы, а также в высокотемпературных зонах топки при неудовлетворительной аэродинамической организации топочного процесса в тех случаях, когда расплавленные частицы золы, не успевшие охладиться и затвердеть, набрасываются потоком газов на стенки топок и трубы экранов. Обычно шлакование начинается в промежутках между экранными трубами, а также в застойных зонах и участках топки. Если температура топочной среды в зоне образования шлаковых отложений ниже температуры начала деформации золы t1, то наружный слой шлака состоит из отвердевших частиц. При повышении температуры наружный слой шлака может оплавляться, что способствует налипанию новых частиц и прогрессирующему шлакованию. При температуре окружающей среды выше точки начала жидкоплавкого состояния ( наружный слой шлака будет оплавляться и дальнейшего его нарастания не будет, так как шлак будет стекать со стенок топки. В таком режиме работают ошипованные экраны топок с жидким шлакоудалением. Шлакование уменьшает тепловосприятие поверхностей нагрева, расположенных в топке, и повышает температуру продуктов сгорания на выходе из топки, что может привести к нарушению нормального гидродинамического режима работы экранов и ширм. В области пароперегревателя, если температура газов ниже, имеют место уплотненные отложения твердых частиц золы. Прочные отложения образуются при наличии в золе топлива свободной извести СаО, которая, соединяясь с SО2, образует сульфат кальция, связывающий между собой и поверхностью труб частицы золы. В экономайзере образуются рыхлые сыпучие отложения мелких фракций золы, причем рост загрязняющего слоя сопровождается разрушением его более крупными частицами, в результате чего устанавливается динамическое равновесие, и состояние загрязняющего слоя приобретает постоянный характер.

В зоне низких температур могут образовываться липкие связанные отложения. Переход от сыпучих к вязким отложениям в области низких температур, где может иметь место конденсация влаги, по-видимому, связан с тем, что в результате смачивания золы появляющейся серной кислотой образуется гипс — вещество с вяжущими свойствами.

Отложения золы на конвективных поверхностях нагрева образуются в основном на кормовых поверхностях труб, а при малых скоростях потока — и на лобовых их поверхностях. Более крупные частицы золы оседают на лобовых поверхностях, более мелкие, огибая трубы и попадая в вихревую зону, оседают на кормовых поверхностях.

Количество отложений на конвективных поверхностях нагрева зависит от скорости потока продуктов сгорания, геометрических характеристик поверхности нагрева и физических свойств золы. Число соприкосновений с трубами мелких частиц увеличивается прямо пропорционально скорости потока, а разрушающие действия крупных частиц растут пропорционально кубу этой скорости. В итоге с увеличением скорости потока динамическое равновесие между процессами оседания золы и разрушения осевшего ее слоя наступает при меньших его размерах.

На рис. 38 показана зависимость коэффициента загрязнения от скорости потока. Существенно влияют на загрязнение труб их диаметр, шаг между трубами, а также порядок их расположения — коридорный или шахматный.

Уменьшение диаметра труб и продольного шага в трубных шахматных пучках значительно уменьшает их загрязнение. В коридорных пучках труб загрязнение больше, чем в шахматных.

Уменьшение размера частиц золы повышает загрязнение конвективных поверхностей нагрева. Однако частицы с размером менее 20 мкм практически не оседают на трубах. Крупные частицы золы оказывают разрушающее влияние на слой отложений золы

Зольность топлива не влияет на толщину загрязнений; по достижении ими определенных пределов зола больше не осаждается на загрязненных трубах. Толщина липких загрязнений в области низких температур зависит от АР и характеристик золы и прогрессирует во времени. Вследствие загрязнения конвективных поверхностей нагрева ухудшаются условия теплопередачи и возрастают их аэродинамические сопротивления. В результате повышается температура уходящих газов, увеличиваются потери q2 и расход электроэнергии на тягу. Для нормальной и надежной работы котлов необходимо поверхности нагрева поддерживать чистыми.

Рис. 38. Зависимость коэффициента загрязнения поверхности нагрева от скорости газов: а - шахматный пучок труб; б — коридорный пучок труб.

16.1.4. ОЧИСТКА НАРУЖНЫХ ПОВЕРХНОСТЕЙ НАГРЕВА ОТ ЗАГРЯЗНЕНИЯ

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяют паровую и пароводяную их обдувку, а также вибрационную очистку. Для конвективных поверхностей нагрева используют паровую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самообдувку. Наибольшее распространение имеют паровая обдувка и дробевая очистка, для ширм и вертикальных пароперегревателей наиболее эффективной является вибрационная очистка. Радикальным является применение самообдувающихся поверхностей нагрева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми. Эффективность очистки поверхностей нагрева с помощью указанных устройств определяется коэффициентом изменения аэродинамического сопротивления газового тракта котла ε =Δрк/Δτ и изменения его тепловой мощности φ = ΔQ/Δτ, где Δрк сопротивления газового тракта котла, Па; ΔQ — уменьшение тепловой мощности котла, кВт; Δτ—период между очистками, ч. Увеличение коэффициентов ε и φ указывает на необходимость уменьшения периода времени между очистками.

Паровая обдувка. Очистка поверхностей нагрева от загрязнений может производиться за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью. Зависимость относительной скорости струи при данном давлении от относительного ее расстояния применительно к воздуху, пару, пароводяной смеси выражается формулой

(16.2)

где ω1 и ω2 — скорости на расстоянии ℓ от сопла и на выходе из него; d2 диаметр сопла.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла.

Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа. Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления.

Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие достаточно эффективно. Давление у обдуваемой поверхности, Па, определяется по формуле

(16.3)

где ωi и υi - скорость и удельный объем обдувочной среды на расстоянии ℓ от сопла. При давлении пара 4 МПа перед обдувочным аппаратом давление струи на расстоянии примерно 3 м от сопла составляет более 2000 Па.

Для удаления отложений с поверхности нагрева давление струи должно составлять примерно 200—250 Па для рыхлых золовых отложений; 400—500 Па для уплотненных золовых отложений; 2000 Па для оплавленных шлаковых отложений. Расход обдувочного агента для перегретого и насыщенного пара, кг/с,

(16.4)

где с=519 для перегретого пара, с=493 для насыщенного пара; μ = 0,95; dк—диаметр сопла в критическом сечении, м; р1 — начальное давление, МПа; ‘ υ1— начальный удельный объем пара, м3/кг.

Аппарат для паровой обдувки топочных экранов состоит из обдувочной трубы для подвода пара и механизма привода. Вначале обдувочной трубе сообщается поступательное движение. Когда сопловая головка вдвигается в топку, труба начинает вращаться. В это время открывается автоматически паровой клапан и пар поступает к двум диаметрально расположенным соплам. После окончания обдува электродвигатель переключается на обратный ход и сопловая головка возвращается в исходное положение, что предохраняет ее от чрезмерного нагрева. Зона действия обдувочного аппарата до 2,5, а глубина захода в топку до 8 м. На стенках топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева.

Для регенеративных воздухоподогревателей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводится к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподогревателя. Обду-ночная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухоподогревателя. Для очистки регенеративного воздухоподогревателя котлов, работающих на твердом топливе, в качестве обдувочного агента применяется пар, а котлов, работающих на мазуте, — щелочная вода. Вода хорошо промывает и нейтрализует сернокислотные соединения, имеющиеся в отложениях.

Пароводяная обдувка. Рабочим агентом обдувочного аппарата служит вода котла или питательная вода. Аппарат представляет собой сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Большая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка основа на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка свободно подвешенных вертикальных труб — ширм и пароперегревателей. Для вибрационной очистки преимущественно применяют электромагнитные вибраторы. Трубы пароперегревателей и ширм прикрепляют к тяге, которая выходит за пределы обмуровки и соединяется с вибратором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электромагнитный вибратор состоит из корпуса с якорем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3—0,4 мм.

Дробеочистка. Дробеочистка применяется для очистки конвективных поверхностей нагрева при наличии на них уплотненных и связанных отложений. Очистка происходит в результате использования кинетической энергии падающих на очищаемые поверхности чугунных дробинок диаметром 3—5 мм. В верхней части конвективной шахты котла помещаются разбрасыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает осевшую на трубах золу, а затем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с частицами золы направляется в циклон, где происходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом, а зола, осевшая в циклоне, удаляется в систему золоудаления котельной установки.

Транспорт дроби осуществляется по всасывающей или нагнетательной схеме. При всасывающей схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагнетательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воздуха 40—50 м/с.

Расход дроби через систему, кг/с, определяется по формуле

(16.5)

 

где - удельный расход дроби на 1 м2 сечения газохода; - площадь сечения газохода шахты в плане, м2 ; n – количество пневмолиний; принимается, что одна пневмолиния обслуживает два разбрасывателя, каждый из которых обслуживает сечение по газоходу, равное 2,5х2,5 м; - продолжительность периода очистки, с. Обычно

= 20-60 с.

Импульсная очистка. Основана на ударном воздействии волны газов. Устройство для импульсной очистки представляет собой камеру, внутренняя полость которой сообщается с газоходами котла, в которых расположены конвективные поверхности нагрева. В камеру горения периодически подается смесь горючих газов с окислителем, которая воспламеняется вскрой. При взрыве смеси в камере повышается давление и образующиеся волны газов очищают поверхности нагрева от загрязнений.

ЛЕКЦИЯ 15

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.