Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Числові рівності та нерівності, їх властивості.



2. Візьмемо два числових вирази і сполучимо їх знаком рівності. Ми одержимо деяке висловлення, яке називається числовою рівністю. Рівність, як і всяке висловлення, може бути істинною чи хибною. Наприклад, рівність 24:2=48-36 – істинне висловлення, а рівність 24+7=42+5 – хибне. Таким чином, якщо сполучити знаком рівності рівні числові вирази, то одержимо істинну числову рівність; якщо ж сполучити знаком рівності два числових вирази, значення яких різні, то одержимо хибну числову рівність.

Із шкільного курсу математики відомі такі властивості істинних числових рівностей:

Властивість 1: якщо а=b – істинна числова рівність, а с – будь-яке дійсне число, то а+с=b+с – також істинна числова рівність.

Цю властивість інколи формулюють і так: якщо до обох частин істинної числової рівності додати одне і те ж саме дійсне число, то знову одержимо істинну рівність. Наприклад, оскільки 12-5=28:4 істинна числова рівність, то і 12-5+47=28:4+47 також істинна рівність. Ця властивість дозволяє переносити числа із однієї частини рівності в іншу, змінюючи при цьому знак числа на протилежний.

Властивість 2: якщо а=b – істинна числова рівність і с – будь-яке дійсне число, відмінне від нуля, то ас=bc – також істинна числова рівність.

Цю властивість інколи формулюють і так: якщо обидві частини істинної числової рівності помножити на одне й теж саме, відмінне від нуля дійсне число, то одержимо істинну числову рівність. Наприклад, оскільки рівність 12-5=28:4 – істинна числова рівність, то і (12-5)●49=28:4●49 – істинна числова рівність.

Оскільки числові рівності є висловленнями, то над ними можна виконувати операції кон’юнкції, диз’юнкції, імплікації, заперечення, еквіваленції. Наприклад: висловлення “3+4=7Ù14:2=7” є кон’юнкцією висловлень, а запереченням висловлення а=b є висловлення а≠b. У початкових класах істинні числові рівності називають правильними, а хибні – неправильними. Ці поняття допомагають учням не тільки удосконалювати обчислювальні навички, але також і глибше вивчати теоретичний матеріал. Це відбувається в процесі виконання вправ такого виду:

а) розстав дужки, щоб рівності були правильними: 15-6●2=18;

б) замість зірочок поставити знак дії так, щоб одержати правильні рівності: 4*2=2; 5*4=20;

в) перевірити розв’язання таких прикладів: 88:8=11, 96:6=13.

Якщо сполучити одним із знаків >, <, ≥, ≤ два числових вирази, то одержимо висловлення, яке називається числовою нерівністю. Наприклад: 27-4>4:3, 32-6<3:2, 26≥37-3, 24+7≤11 тощо. Оскільки числові нерівності є висловленнями, то вони можуть бути як істинними, так і хибними. Нерівності а>b і с>d (чи а<b і с<d, чи а≥b і с≥d, чи а≤b і с≤d) – називають нерівностями однакового смислу, а нерівності а>b і с<d (чи а<b і с>d, чи а≥b і с≤d, чи а≤b і с≥d) – нерівностями протилежного смислу. Нерівності а<b і с>d називаються строгими нерівностями, а нерівності а≤b і с≥d – нестрогими.

У математиці є й інший підхід до визначення поняття нерівності. Враховуючи той факт, що для двох дійсних чисел існує одне і тільки одне із трьох співвідношень а>b, а=b, а<b, говорять: 1) якщо різниця чисел а-b додатна, то вважають, що а>b; 2) якщо різниці чисел а-b дорівнює нулю, то вважають, що а=b; 3) якщо різниця чисел а-b від’ємна, то вважають, що а<b.

Розглянемо основні властивості числових нерівностей:

Властивість 1: для будь-яких а і b, якщо а>b, то b<а.

Доведення:

За умовою а>b, а тому різниця а-b – додатна. Помноживши її на -1, одержимо від’ємне число –(а-b)=b-а. Це означає, що b<а. Властивість доведено.

Властивість 2: для будь-яких а, b, с, якщо ((а>b)Ù(b>c))→(а>с).

Доведення:

Оскільки а>b і b>c, то різниці а-b і b-c будуть додатними. Тоді сума двох додатних чисел (а-b)+(b-c) також буде додатною. Отже, маємо (а-b)+(b-c)=а-с. Це число додатне, а тому а>c. Властивість доведено.

Властивість 3: для будь-якого а нерівності а>а і а<а завжди хибні.

Доведення:

Припустимо, що висловлення а>а – істинне, а тому різниця а-а - додатна. Тоді на основі властивості 1 маємо а<а, тобто а-а<0. Але ж за припущенням а-а>0, а це суперечить теоремі про єдиність різниці.

Властивість 4: для будь-яких а, b, c якщо a>b, то а+с>b+с.

Доведення:

За умовою а>b, тобто а-b>0. Додамо і віднімемо в лівій частині число с, тоді матимемо (а+с)-(b+с)>0. Отже, а+с>b+c. Властивість доведено.

Властивість 5: для будь-яких а, b, c якщо a>b і c>0, то ас>bc, а при c<0, ас<bc.

Доведення:

За умовою a>b, а тоді а-b>0. Отже, при с>0 (a-b)c>0 або ac-bc>0, тобто ac>bc.

Властивість 6: нерівності однакового смислу можна почленно додавати, залишивши спільний знак нерівності.

Доведення:

Нехай дано дві нерівності однакового смислу, тобто a>b і c>d. За умовою a>b, а тому на основі властивості 4 маємо a+с>b+с. Аналогічно з нерівності c>d маємо b+c>b+d. Тоді на оcнові властивості 6 із a+с>b+с і b+c>b+d маємо a+с> b+d. Властивість доведено.

Властивість 7: нерівності протилежного смислу можна почленно віднімати, поставивши знак тієї нерівності, від якої віднімали.

Властивість 8: нерівності однакового смислу з додатними членами можна почленно перемножати, поставивши спільний знак нерівності.

Пропонуємо студентам довести самостійно властивості №№ 7, 8 числових нерівностей. Властивості №№ 1-5 були сформульовані і доведені для нерівностей із знаком “>”. Однак і для нерівностей із знаками “<”, „≥”, „≤” можна сформулювати та довести такі ж самі властивості.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.