Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Эмпирические распределения

Для практических задач знание закона или функции распределения – редкость. Здесь закон распределения обычно неизвестен, или известен с точностью до некоторых неизвестных параметров. В частности, невозможно рассчитать точное значение соот­ветствующих вероятностей, так как нельзя определить количество общих и благо­приятных исходов. Поэтому вводится статистическое определение вероятности. По этому определению вероятность равна отношению числа испытаний, в которых событие произошло, к общему числу произведенных испытаний. Такая вероятность называется статистической частотой

Связь между эмпирической функцией распределения и функцией распределения (теоретической функцией распределения) такая же, как связь между частотой события и его вероятностью.

Для построения выборочной функции распределения весь диапазон изменения случайной величины X (выборки) разбивают на ряд интервалов одинаковой ширины. Число интервалов обычно выбирают не менее 3 и не более 15. Затем определяют число значений случайной величины X, попавших в каждый интервал (абсолютная частота, частота интервалов).

Частота интервалов – число, показывающее сколько раз значения, относящиеся к каждому интервалу группировки, встречаются в выборке. Поделив эти числа на общее количество наблюдений (n), находят относительную частоту (частость) попадания случайной величины X в заданные интервалы.

По найденным относительным частотам строят гистограммы выборочных функций распределения. Гистограмма распределения частот – это графическое представление выборки, где по оси абсцисс (ОХ) отложены величины интервалов, а по оси ординат (ОУ) – величины частот, попадающих в данный классовый интервал. При увеличении до бесконечности размера выборки выборочные функции распределения превращаются в теоретические: гистограмма превращается в график плотности распределения.

Накопленная частота интервалов – это число, полученное последовательным суммированием частот в направлении от первого интервала к последнему, до того интервала включительно, для которого определяется накопленная частота.

В Excel для построения выборочных функций распределения используются спе­циальная функция ЧАСТОТА и процедура Гистограмма из пакета анализа.

Функция ЧАСТОТА(массив_данных, двоичный_массив) вычисляет частоты появления случайной величины в интер­валах значений и выводит их как массив цифр, где

• массив_данных — это массив или ссылка на множество данных, для которых
вычисляются частоты;

• двоичный_массив — это массив интервалов, по ко­торым группируются значения выборки.

Процедура Гистограмма из Пакета анализа выводит результаты выборочного распределения в виде таблицы и графика. Параметры диалогового окна Гистограмма:

Входной диапазон - диапазон исследуемых данных (выборка);

Интервал интервалов - диапазон ячеек или набор граничных значений, определяющих выбранные интервалы. Эти значения должны быть введены в воз­растающем порядке. Если диапазон интервалов не был введен, то набор интервалов, равномерно распределенных между минимальным и максимальным значениями данных, будет создан автоматически.

• выходной диапазон предназначен для ввода ссылки на левую верхнюю ячейку выходного диапазона.

• переключатель Интегральный процент позволяет установить режим включения в гистограмму графика интегральных процентов.

• переключатель Вывод графика позволяет установить режим автоматическо­го создания встроенной диаграммы на листе, содержащем выходной диапазон.

Пример 5. Построить эмпирическое распределение веса студентов в килограм­мах для следующей выборки: 64, 57, 63, 62, 58, 61, 63, 70, 60, 61, 65, 62, 62, 40, 64, 61, 59, 59, 63, 61.

Решение

1. В ячейку А1 введите слово Наблюдения, а в диапазон А2:А21 — значения веса
студентов (см. рис. 1).

2. В ячейку В1 введите названия интервалов Вес, кг. В диапазон В2:В8 введите граничные значения ин­тервалов (40, 45, 50, 55, 60, 65, 70).

3. Введите заголовки создаваемой таблицы: в ячейки С1 — Абсолютные час­тоты, в ячейки D1 — Относительные частоты, в ячейки E1 — Накоплен­ные частоты.(см. рис. 1).

4. С помощью функции Частота заполните столбец абсолютных частот, для этого выделите блок ячеек С2:С8. С па­нели инструментов Стандартная вызовите Мастер функций (кнопка fx). В появив­шемся диалоговом окне выберите категорию Статистические и функцию ЧАСТОТА, после чего нажмите кнопку ОК. Указателем мыши в рабочее поле Массив_данных введите диапазон данных наблюдений (А2:А8). В рабочее поле Двоичный_массив мышью введите диапазон интервалов (В2:В8). Слева на клавиатуре последовательно нажмите комбинацию клавиш Ctrl+Shift+Enter. В столбцеC должен появиться массив абсолютных частот (см. рис.1).

5. В ячейке C9 найдите общее количество наблюдений. Активизируйте ячейку С9, на панели инструментов Стандартная нажмите кнопку Автосумма. Убедитесь, что диапазон суммирования указан правильно и нажмите клавишу Enter. Рис. 1. Результат вычислений из примера 1

6. Заполните столбец относительных частот. В ячейку введите формулу для вычисления относительной частоты: =C2/$C$9. Нажмите клавишу Enter. Протягиванием (за правый нижний угол при нажатой левой кнопке мыши) скопируйте введенную формулу в диапазон и получите массив относительных частот.

7. Заполните столбец накопленных частот. В ячейку D2 скопируйте значение от­носительной частоты из ячейки E2. В ячейку D3 введите формулу: =E2+D3. Нажмите клавишу Enter. Протягиванием (за правый нижний угол при нажатой левой кнопке мыши) скопируйте введенную формулу в диапазон D3:D8. Получим массив накопленных частот.

8. Постройте диаграмму относительных и накопленных частот. Щелчком ука­зателя мыши по кнопке на панели инструментов вызовите Мастер диаграмм. В появившемся диалоговом окне выберите закладку Нестандартные и тип диаг­раммы График/гистограмма. После редактирования диаграмма будет иметь такой вид, как на рис. 2.

Рис. 2 Диаграмма относительных и

накопленныхчастот из примера 1

Задание 4 для самостоятельной работы

1. Для данных из примера 1 построить выборочные функции распределения, воспользовавшись процедурой Гистограмма из пакета Анализа.

2. Построить выборочные функции распределения (относительные и накопленные частоты) для роста в см. 20 студентов: 181, 169, 178, 178, 171, 179, 172, 181, 179, 168, 174, 167, 169, 171, 179, 181, 181, 183, 172, 176.

3. Найдите распределение по абсолютным частотам для следующих результатов тестирования в баллах: 79, 85, 78, 85, 83, 81, 95, 88, 97, 85 (используйте границы интервалов 70, 80, 90).

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.