Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Сцепленное наследование. Закон Т. Моргана. Группы сцепления. Методы генетического картирования. Соматическая гибридизация, её значение в установлении групп сцепления человека



Мендель изучил наследование только семи пар при­знаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два призна­ка — форма пыльцы и окраска цветков — не дают неза­висимого распределения в потомстве. Потомки остава­лись похожими на родителей. Постепенно таких исклю­чений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распре­деления в потомстве и свободного комбинирования распространяется не на все гены. Действительно, у лю­бого организма признаков очень много, а число хромосом невелико.

В каждой хромосоме должно локализоваться мно­го генов. Каковы же закономерности наследования генов, локализованных & одной хромосоме? Вопрос этот был изучен выдающимся американским генетиком Т. Морганом.

Предположим, что два гена — А и В находятся в од­ной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам:

В анафазе I мейотического деления гомологичные хромосомы расходятся к разным полюсам и образуются два типа гамет вместо четырех, как должно быть при дигибридном скре­щивании в соответствии с третьим законом Менделя.


При скрещивании с организмом, рецессивным по обоим генам aabb, получается расщепление 1:1 вместо ожидаемого при дигибридном анализирующем скрещивании 1:1:1:1. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно.

Явление совместного наследования генов, локализо­ванных в одной хромосоме, называется сцепленным наследованием, а локализация генов в одной хромосо­ме — сцеплением генов. Сцепленное наследование генов, локализованных в одной хромосоме, установил Мор­ган.

Таким образом, третий закон Менделя применим лишь к наследованию аллельных пар, находящихся в негомологичных хромосомах.

Все гены, входящие в состав одной хромосомы, пере­даются по наследству совместно и составляют группу сцепления. Поскольку в гомологичных хромосомах на­ходятся одинаковые гены, группу сцепления составляют две гомологичные хромосомы. Число групп сцепления у данного вида организмов соответствует числу хромосом в гаплоидном наборе. Так, у человека 46 хромосом в диплоидном наборе — 23 группы сцепления, у дрозо­филы 8 хромосом — 4 группы сцепления, у гороха 14 хромосом — 7 групп сцепления. Однако при анализе наследования сцепленных генов было обнаружено, что в определенном проценте случаев сцепление может на­рушаться.

Вспомним, что в профазе I мейотического деления гомологичные хромосомы конъюгируют. В этот момент может произойти обмен участками гомологичных хро­мосом.

Предположим, что в одной из гомологичных хромо­сом локализуются пять известных нам доминантных генов, а в другой — пять их рецессивных аллелей. Если проследить распределение в потомстве двух генов — А и В, то в результате расхождения гомологичных хромосом в анафазе I мейотического деления дигетерозиготный организм в случае сцепления генов А и В должен давать два типа гамет: АВ и ab. Но если в результате кроссин-говера в некоторых клетках происходит обмен участка­ми хромосом между генами А и В, то появляются гаметы АЬ и аВ, и в потомстве образуются четыре группы фено­типов, как при свободном комбинировании генов. Отли­чие заключается в том, что числовое отношение феноти­пов не соответствует отношению 1:1:1:1, установленно­му для дигибридного анализирующего скрещивания.

Таким образом, сцепление генов может быть полным и неполным. Причина нарушения сцепления — кроссин-говер, т. е. перекрест хромосом в профазе I мейотическо­го деления. Чем дальше друг от друга расположены ге­ны в хромосоме, тем выше вероятность перекреста меж­ду ними и тем больше процент гамет с перекомбиниро­ванными генами. В генетике принято определять рас­стояние между генами в процентах гамет, при образова­нии которых в результате кроссинговера произошла перекомбинация генов в гомологичных хромосомах. Кроссинговер — важный источник комбинативной гене­тической изменчивости.

Закон Моргана

Сцепленные гены, локализованные в одной хромосоме, наследуются совместно и не обнаруживают независимого распределения

Группы сцепления.

Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления. Количество групп сцепления каждого вида должно соответствовать числу пар хромосом. Кроссинговер возникает со вполне определенной частотой для каждой пары генов, расположенных в одной группе сцепления. Причем, чем ближе в хромосоме расположены гены друг у другу, тем она выше. На основании анализа частоты кроссинговера между генами можно вычислить расстояние между генами и, таким образом, определить их локализацию в хромосоме План расположения генов в хромосоме называется картой хромосомы.

Хромосомные карты построены для животных ряда видов, однако для собаки их нет, так как для их составления необходимы фундаментальные исследования генетики вида и большой статистический материал, получение которого у собак затруднительно. Для кошки установлено положение на хромосомах приблизительно для 50 генов (Бородин, 1995).

На основании анализа результатов многочисленных экспериментов с мухой дрозофилой Т. Морган сформулировал свою хромосомную теорию наследственности, сущность которой заключается в следующем:

1. Материальные носители наследственности — гены — находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга.

2. Гены, расположенные в одной хромосоме, наследуются сцепленно. Число групп сцепления соответствует гаплоидному числу хромосом.

3. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.

4. В потомстве гетерозиготных родителей новое сочетание генов, расположенных в одной паре хромосом, может возникнуть в результате кроссинговера в процессе мейоза.

5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Сцепление генов приводит к одновременному наследованию блока признаков. Эти блоки могут сохраняться на протяжении нескольких поколений. Именно они способствуют передаче сложных признаков, например определяют внешнее сходство дедов и внуков, или обусловливают то, что все метисы колли или кокеров имеют совершенно определенную внешность независимо от внешнего вида второго родителя.

Сцепление признаков может происходить в силу целого ряда причин, среди них и сцепление генов и плейотропия и действие определенных каналов морфогенеза. Сцепление признаков в значительной степени обусловливают тип собаки, препотентность производителя и делают возможным существование заводских линий.

Методы генетического картирования

Современные методы картирования сложнонаследуемых признаков и мультифункциональных заболеваний включают 5 основных способов:

· анализ сцепления , основанный на проверке конкретной модели наследования болезни в родословных;

· Метод идентичных по происхождению аллелей (параметрический метод) , который заключается в оценке того, насколько часто больные родственники наследуют идентичный участок генома;

· анализ ассоциаций в популяциях и семьях ,

· анализ неравновесия по сцеплению и

· анализ экспериментов по скрещиванию модельных организмов.

Соматическая гибридизация

Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Используются клетки от разных людей, а также от человека и других животных (мыши, крысы, морской свинки, обезьяны и т.д.). Гибридные клетки, содержащие два полных генома, при делении обычно «теряют» хромосомы одного из видов. Например, в гибридных клетках «человек – мышь» постепенно утрачиваются все хромосомы человека. Можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах. Можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Они позволяют судить о генной активности. Это позволяет судить о генетической гетерогенности наследственных болезней, изучать их патогенез.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.