Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ПОЛЯРИЗАЦІЯ ДІЕЛЕКТРИКІВ



Основною властивістю діелектриків є здатність до поляризації під дією прикладеної напруги. Процес поляризації являє собою зміну розташування в просторі часток діелектрика, що мають електричні заряди. Елементарні диполі, що представляють зв'язані й невіддільні один від одного молекули діелектрика, позитивні й негативні заряди яких зміщені один відносно другого, характери-зуються електричним моментом p:

p = q l,(1.1)

де q – заряд диполя; l- відстань між зарядами.

Під дію електричного поля диполі починають орієнтуватися в просторі і створюють сумарний момент. Такий момент, віднесений до одиниці об'єму діелектрика, називається поляризованістю діелектрика P

P = , (1.2)

де V – об’єм діелектрика

Залежність поляризованості P від напруженості електричного поля Ев діелектрику для більшості діелектриків має лінійний характер. При малих значеннях напруженості поля для ізотропних діелектриків можна записати

, (1.3)

де - діелектрична сприйнятливість діелектрика. Вона зв'язана з відносною діелектричною проникністю діелектрика співвідношенням ;

- абсолютна діелектрична сприйнятливість чи питома поляризованість.

Особливу групу складають сегнетоелектрики, електрети, а також деякі іонні кристали, для яких зв'язок між Рі Енелінійний і залежить від поперед-нього значення Е.

Зсув зарядів у діелектрику приводить до утворення внутрішнього поля, спрямованого протилежно зовнішньому, що може бути представлено вектором електричного зсуву D.

,(1.4)

де – електрична постійна, рівна8,854 10-12 Ф/м.

Перший доданок у цьому виразі пропорційний розподіленій щільності за-ряду, утвореного у вакуумі, а другий залежить від ступеня поляризації діелек-трика. Відповідно до теореми Гаусса для поля вектора Dпотік цього вектора крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі зарядів, охоплюваних цією поверхнею

внутр . (1.5)

Слід зазначити, що вектор Dявляє собою суму двох зовсім різних величин, у зв'язку з чим він не має глибокого фізичного змісту і являє собою допоміжний вектор. Однак, у багатьох випадках вектор Dзначно спрощує вивчення поля в діелектриках.

Наведені співвідношення (1.4) і (1.5) можуть бути використані як для ізотропних, так і для анізотропних діелектриків. Розмірність вектора Dта сама, що і вектора Р – Кл/м2.

Використовуючи вираз (1.3) для ізотропного діелектрика, залежність век-тора Dвід вектора Еможна подати у виді

чи . (1.6)

Кожний діелектрик з нанесеними на нього електродами, включений в електричну мережу, можна розглядати як конденсатор певної ємності. Заряд такого конденсатора Q дорівнює

Q = C U,(1.7)

де С – ємність конденсатора, U – прикладена напруга.

При заданому значенні прикладеної напруги величина заряду Q складаєть-ся із заряду Qо,який був би присутній на електродах, якщо їх розділяв вакуум, і заряду Qд ,що обумовлений поляризацією діелектрика, котрий фактично поді-ляє електроди:

Q = Qо + Qд (1.8)

Здатність діелектрика утворювати ємність можна оцінити за допомогою параметра відносної діелектричної проникності ,що представляє відношення заряду Q, отриманого при деякій напрузі на конденсаторі, що містить даний діелектрик, до заряду Qо, який можна було б одержати на конденсаторі тих же геометричних розмірів і при тій же напрузі, якби між електродами знаходився вакуум:

= . (1.9)

З наведеної формули видно, що значення будь-якого діелектрика більше одиниці і тільки в тому випадку, коли між електродами знаходиться вакуум

= 1.

Фактично параметр показує, у скільки разів зміниться ємність конденсатора при заміні вакууму між його пластинами досліджуваним діелектриком:

С= Со .(1.10)

Крім параметра часто використовують параметр абсолютної діелектричної проникності:

,(1.11)

Відносна діелектрична проникність використовується в багатьох рівнян-нях, що характеризують фізичні процеси, які протікають у діелектриках. Так, відповідно до закону Кулона сила взаємодії F двох точечних зарядів q1 і q2 , розташованих в неорганічному середовищі з відносною діелектричною проникністю на відстані h один від другого, дорівнює

F = . (1.12)

Значення діелектричної проникності важливо знати і для розрахунку напруженості електричного поля в багатошарових діелектриках. Наприклад, для випадку двошарового конденсатора (рис.1.1) напруженість електричного поля в шарах дорівнює

U

 

E1 E2

εr1 εr2

 

h1 h2

Рис.1.1 – Двошаровий конденсатор

 

. (1.13)

Напруга на шарах

. (1.14)

З наведених формул виходить, що при меншій діелектричній проникності шару напруга на ньому збільшується. В особливо невигідному положенні виявляються повітряні прошарки всередині ізоляції. У зв'язку з малим значенням εr і низкою електричною міцністю в таких прошарках легко виникають часткові розряди.

У тому випадку, коли діелектрик представляє суміш хімічно не взаємодіючих один з одним компонентів з різними діелектричними проникностями, загальну діелектричну проникність можна визначити приблизно на підставі рівняння Ліхтенеккера

, (1.15)

де - відповідно відносні діелектричні проникності суміші й окремих компонентів; - об'ємні концентрації компонентів, ; - величина, що характеризує розподіл компонентів і приймає значення від +1 до –1.

При паралельному включенні компонентів і вираз (1.15) має вигляд

.

При послідовному включенні компонентів, коли ,

Якщо компоненти розподілені хаотично, то

. (1.16)

Електрична ємність конденсатора, крім геометричних розмірів і конфігу-рації конденсатора, залежить також від відносної діелектричної проникності діелектрика, що в ньому використовується.

Ємність плоского конденсатора визначається за формулою

(1.17)

де - площа електрода; - відстань між електродами.

Для циліндричного конденсатора (рис.1.2) запишемо

, (1.18)


якщо , то . (1.19)

Рис.1.2 – Циліндричний конденсатор

Для ізоляції кабелів, систем рівнобіжних проводів і т.п. вводиться поняття питомої (погонної) ємності, тобто ємності, віднесеної до одиниці довжини К= С/L . Так, для одножильного кабеля питома ємність (нФ/м) між жилою діаметром d1 і металевою оболонкою чи екраном з діаметром d2 дорівнює

К= , (1.20)

або при К . (1.21)

Для двох рівнобіжних круглих проводів діаметром d кожний при відстані між їхніми осями h,за умови d<<h і без урахування впливу землі питома ємність визначається за формулою

. (1.22)

За цією ж формулою можна визначати питому ємність між проводом і землею.

Величина відносної діелектричної проникності для різних діелектриків змінюється в широких межах. Значення газів близьке до одиниці. Так, для повітря = 1,00058. Більшість практично застосовуваних рідких і твердих діелектриків мають значення порядку декількох одиниць, менше зустрічаються діелектрики, в яких складає кілька десятків і дуже рідко, коли ця величина перевищує значення сто одиниць. У сегнетоелектриках вона може досягати значення кілька десятків тисяч.

П'єзоелектрика(від греч.(грецький) piézo — давлю і електрика ), явища виникнення поляризації діелектрика під дією механічної напруги (прямий п'єзоелектричний ефект) і виникнення механічних деформацій під дією електричного поля (зворотний п'єзоелектричний ефект). Прямій і зворотний п'єзоелектричний ефекти спостерігаються в одних і тих же кристалах — п’єзоелектриках. Перше детальне дослідження п'єзоелектричних ефектів зроблене в 1880 братами Ж. і П. Кюрі на кристалі кварцу . Надалі п'єзоелектричні властивості були виявлені більш ніж в 1500 речовин, з яких широко використовуються сегнетова сіль, титанат барії і ін.

— прямий п'єзоелектричний ефект; стискування або розтягування п'єзоелектричної пластини приводить до виникнення різниці потенціалів; би — зворотний п'єзоелектричний ефект; залежно від знаку різниці потенціалів, прикладеної до п'єзоелектричної пластинки, вона стискується або розтягується.

Електроємність

 

Електроємністю (ємністю) – провідника С називають величину, що дорівнює відношенню заряду q, наданого провіднику до його потенціалу :

Одиниця електричної ємності в СІ – фарад, [C] = Кл/В=Ф.

Система з двох провідників розділених шаром діелектрика, товщина якого мала порівняно з розмірами провідників, називається конденсатором. Конденсатор бувають плоскі, циліндричні, сферичні.

Електроємність плоского конденсатора:

S – площа пластини, d – відстань між пластинами, ? – діелектрична проникність діелектрика.

Ємність конденсатора з п пластин:

Конденсатор - це важливий елемент електричної ланцюга, що з які проводять електродів(обкладань), розділених діелектриком і готовій до використання ємкості. Ємкість конденсатора - є ставлення заряду конденсатора до різниці потенціалів, якові заряд повідомляє конденсатору. Як діелектрика в конденсаторах використовуються органічні та неорганічні матеріалі, зокрема оксидні плівки деяких металів. При додатку до конденсатору постійної напруги відбувається його заряд; в своїй витрачається певна робота висловлюване в джоулях. Класифікація конденсаторів. Поклад від призначення конденсаторі поділяються на великі групі: загального користування та спеціального призначення. Група загального призначення включає в собі широко застосовувані конденсаторі, використовувані переважно видив тварин і класів апаратурі. Традиційно до неї відносять найпоширеніші низьковольтні конденсаторі, яких не пред'являються особливі вимоги. Решта конденсаторі є спеціальними. До них належать: високовольтні імпульсні, перешкодо подавляючи, дозиметричні, пускові і ін. Поклад від способу монтажу конденсаторі можуть виконуватися для друкованого і навісного монтажу, соціальній та складі мікромодулів і мікросхем або заради поєднання із нею. Висновки конденсаторів для навісного монтажу можуть буті жорсткі чи м'які, аксіальні чи радіальні з дроту круглого перерізу чи стрічки, як пелюсток, з кабельнім введенням, як прохідних шпильок, опорних гвинтів.

 

 

Конденсатори з’єднують у батареї паралельно або послідовно.

1. Паралельне з’єднання (Рис. 31):

Напруги на всіх конденсаторах однакові:

U1=U2=…=Un

q = q 1+ q2 + … + qn

Тоді Спар = С12+…+Сn

2. Послідовне з’єднання (Рис. 32):

Заряди усіх конденсаторів при послідовному їх з’єднанні однакові.

Загальна ємність:

Потенціальна енергія зарядженого конденсатора:

Для плоского конденсатора:

Густина енергії електричного поля:

 

Властивості конденсатора

 

Прикладання електричної напруги до обкладок конденсатора спричиняє накопичення на них електричного заряду. Після відключення від джерела напруги, заряд утримується на обкладках силами електростатики. Якщо конденсатор у цілісний елемент не є наелектризованим то заряд, що накопичений на обох обкладках є однаковим за величиною і протилежний за знаком. Здатність конденсатора накопичувати заряд характеризує його електрична ємність:

де: C — ємність конденсатора у фарадах;

Q — електричний заряд, що накопичений на одній з об кладок в кулонах;

U — електрична напруга між об кладками у вольтах.

Ємність виражається у фарадах. Одна фарада є досить значною одиницею, тому на практиці ємність конденсаторів виражається у піко-, нано-, мікро- та міліфарадах.

У загальному випадку, напруга і електричний струм конденсатора у момент часу t пов'язані залежністю:

Робота dW, яку слід виконати, щоб перенести елементарний заряд dq з однієї обкладки конденсатора ємності C, на іншу, при допущенні, що одна з обкладок містить заряд з поточним значенням q.

Енергію, яка накопичена в конденсаторі можна визначити інтегруванням рівняння, записаного вище з отриманням виразу:

де: Q — початкове значення заряду конденсатора.

Зміну величини заряду конденсатора у часі характеризує електричний струм у момент заряджання, на основі чого можна записати:

Конденсатор у колі постійної напруги після того, як він зарядиться не проводить струм, оскільки його обкладки розділені діелектриком. У ланцюгу зі змінною напругою він проводить електричний струм, оскільки коливання змінного струму викликають циклічне перезаряджання конденсатора, а тому і струм у ланцюгу, що описується рівняннями:

Величина, що пов'язує струм і напругу на конденсаторі, називається реактивним опором, котра є тим меншою, чим більшою є ємність конденсатора і частота струму. Для конденсатора характерним є те, що для синусоїдального закону зміни струму, зміна напруги відстає за фазою на кут (тобто струм випереджає напругу за фазою на кут ). З цієї точки зору імпеданс конденсатора є комплексним числом і описується рівнянням:

де: ω — кутова частота;

f — частота в герцах;

i — уявна одиниця

Реактивний опір ємнісного опору записується рівнянням:

Відповідно, для постійного струму частота дорівнює нулю, а опір конденсатора — нескінченна величина (в ідеальному випадку).

При зміні частоти змінюється діелектрична проникність діелектрика і рівень впливу паразитних параметрів — власної індуктивності і опору втрат. На високих частотах будь-який конденсатор можна розглядати як послідовний коливальний контур, утворений ємністю С, власною індуктивністю LС і опором втрат Rn.

 

При f > fp конденсатор в колі змінного струму поводить себе як котушка індуктивності. Відповідно, конденсатор доцільно використовувати лише на частотах f < fp, на яких його опір має ємнісний характер.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.