Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Идеальные холодильные циклы и установки



Термодинамич. совершенство реального (необратимого) цикла оценивается сравнением его параметров с параметрами идеального (обратимого) цикла. Отношение холодильного коэф. реального цикла к холодильномукоэф. соответствующего идеального цикла наз. термодинамическим коэффициентом цикла
Известны схемы и параметры ряда идеальных циклов: охлаждения, термостатирования, конденсации, сжижения и др.

Идеальный цикл охлаждения.Схема установки, работающей по этому циклу, и его изображение в координатах Т -S показаны на рис. 2 (здесь и далее точками 1, 2, 3,..., п обозначены стационарные характерные состояния рабочего тела, а изменения его параметров, отвечающие происходящим в установке процессам, изображены линиями 1-2 и т.д.). Хладагент изотермически сжимается в компрессоре K1 от давления р1 додавления р2(процесс 1-2), при этом теплота сжатия q0 отдается в окружающую среду. Затем происходит адиабатич. расширение рабочего тела вдетандере (процесс 2-3, S = const), где за счет совершения работы lд хладагентом его т-ра понижается до Тx3. В теплообменнике ТО рабочее тело нагревается (процесс 3-4) до т-ры Т4 путем подвода к нему теплоты qxот охлаждаемого тела (процесс 4'-3') и адиабатически сжимается (процесс 4-1) в компрессоре К2 до начальных параметров (точка 1). Процесс в ТО характеризуется отсутствием гидравлич. потерь, а также равенством т-р охлаждаемого и рабочего тел во всех сечениях аппарата. Т-ра охлаждаемого тела уменьшается, а затрачиваемая работа lц = lK1 + lK2 - lд = q0 - qx, где lK1 и lK2 - работы изотермич. и адиабатич. сжатия хладагента в компрессорах.

Рис. 2. Идеальный цикл охлаждения.

В тепловых расчетах холодильных циклов удобно использовать связь между изменением энтальпии di хладагента и изменениями его теплоты и рабочих параметров, выражаемую ур-нием: di = dq + Vdp. Отсюда для наиб.распространенного на практике изобарного охлаждения имеем: qx = i4 - i3 и lц = T0(S1 - S2) - (i4 - i3), гдe i3 и i4 - энтальпии рабочего тела. На рис. 2 работе lц эквивалентна площадь 12341, кол-ву отведенной теплоты q0 - площадь 12ab1, кол-ву подведенной к хладагенту или отведенной от охлаждаемого тела теплоты qx - площадь аb43а (здесь и далее заштрихована). В общем случае обратимый процесс 3-4 м. б. не только изобарным, тогда

где С - теплоемкость хладагента.

Рис. 3. Идеальный цикл термостатирования.

Этот цикл принимается в качестве идеального для воздушных холодильных, а также криогенных газовых и рефрижераторных установок (см. ниже).

 

7.Пары. Параметры состояний

Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Пары́ прочих веществ оговариваются в явном виде. Не следует путать оптически однородный и гомогенный пар с туманом — гетерогенной системой, сильно рассеивающей свет.

Различают следующие виды состояний пара химически чистых веществ: Ненасыщенный пар — пар, не достигший термодинамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.

У разных жидкостей динамическое равновесие с паром наступает при различной плотности пара. Причина этого заключается в различии сил межмолекулярного взаимодействия. В жидкостях, у которых силы межмолекулярного притяжения велики, например у ртути, только наиболее быстрые молекулы, число которых незначительно, могут вылетать из жидкости. Поэтому для таких жидкостей уже при небольшой плотности пара наступает состояние равновесия. У летучих жидкостей с малой силой притяжения молекул, например у эфира, при той же температуре может вылететь за пределы жидкости множество молекул. Поэтому и равновесное состояние наступает только при значительной плотности пара.

Водяной пар — газообразное состояние воды. Не имеет цвета, вкуса и запаха. Содержится в тропосфере.

Образуется молекулами воды при её испарении. При поступлении водяного пара в воздух он, как и все другие газы, создаёт определённое давление, называемое парциальным.[1] Оно выражается в единицах давления — паскалях. Водяной пар может переходить непосредственно в твёрдую фазу — в кристаллы льда. Количество водяного пара в граммах, содержащегося в 1 кубическом метре, называют абсолютной влажностью воздуха.

Так как теплоёмкость пара, вернее теплота его конденсации достаточно велика, он часто используется в качестве эффективного теплоносителя. Как примеры использования можно привести паровое отопление, промышленное использование пара, например, парогенераторы.

Процессы преобразования энергии в различных тепловых машинах осуществляется с помощью вещества, называемого рабочим телом. В качестве рабочих тел могут выступать вещества в жидком, газообразном и твердом состояниях. Они являются «посредниками» в процессе обмена энергией между системой и окружающей средой. Так, например, нагреваемый газ расширяется и совершает механическую работу. В результате происходит преобразование тепловой энергии в механическую.

Рабочее тело характеризуют различные параметры состояния – давление, объем, температура, внутренняя энергия, энтальпия, т.д. В качестве основныхпараметров состояния принимают: удельный объём, абсолютное давление и абсолютную температуру.

Удельным объёмом называется объём единицы массы вещества:

, м3/кг.

Масса единицы объёма, т.е. величина обратная удельному объему, называется плотностью:

, кг/м3. Очевидно соотношение: .

Абсолютным давлением называется давление газа, обусловленное совокупностью ударов беспорядочно движущихся молекул о стенки сосуда, в котором заключен газ, и представляет собой нормальную силу F, действующую на единицу площади А поверхности стенки:

, кг/м2 = Па.

В системе СИ давление измеряется в паскалях (Па).

Для измерения давления используют приборы: атмосферного – барометры, выше атмосферного – манометры, ниже атмосферного – вакуумметры. Барометр – единственный прибор, измеряющий абсолютное давление атмосферы атм). Давление, которое регистрирует манометр или вакуумметр, называют избыточным изб). Оно не является параметром состояния рабочего тела, а лишь показывает на сколько давление в сосуде выше или ниже атмосферного. Действительное давление (р) в сосуде (абсолютное) является параметром состояния и равно сумме:

.

Величина, характеризующая степень нагретости тела, называется температурой.Степень нагретости тел связана со среднеквадратичной скоростью движения молекул выражением:

, где m = масса молекулы,k – постоянная Больцмана,Т – абсолютная температура.

Абсолютная температура измеряется в кельвинах (К) и всегда положительна. Абсолютный нуль – это температура, при которой прекращается тепловое движение молекул, т.е. начало отсчета температуры по шкале Кельвина. Температура по шкале Кельвина связана с температурой по шкале Цельсия соотношением: .

 

8.Паровые таблицы и диаграммы

Цикл Ренкина

Теоретическим циклом современной паросиловой установки является цикл Ренкина.

Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.

Конденсатор играет двоякую роль в установке: Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей. Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк около 0,04 - 0,06 бар) и совершать за счет этого дополнительную работу.

Рисунок 6.Цикл Ренкина в T-S диаграмме.

Синяя линия в Т-S диаграмме воды является разделительной, при энтропии и температуре соответствующим точкам лежащим на диаграмме выше этой линии существует только пар, ниже паро–водяная смесь.

Влажный пар в конденсаторе полностью конденсируется по изобаре p2=const (линия 2 - 3). Затем вода сжимается насосом от давления P2 до давления P1, этот адиабатный процесс изображен в T-S-диаграмме вертикальным отрезком 3-5.

Длина отрезка 3-5 в T-S-диаграмме весьма мала, так как в области жидкости, изобары (линии постоянного давления) в T-S-диаграмме проходят очень близко друг от друга. Благодаря этому при изоэптропном (при постоянной энтропии) сжатии воды, температура воды возрастает менее чем на 2 - 3 °С, и можно с хорошей степенью приближения считать, что в области жидкости изобары воды практически совпадают с левой пограничной кривой (синяя линия); поэтому зачастую при изображении цикла Ренкина в Т-S-диаграмме изобары в области жидкости изображают сливающимися с левой пограничной кривой. Малая величина отрезка адиабаты 3-5 свидетельствует о малой работе, затрачиваемой насосом на сжатие воды. Малая величина работы сжатия по сравнению с величиной работы, производимой водяным паром в процессе расширения 1-2, является важным преимуществом цикла Ренкина.

Из насоса вода под давлением P2 поступает в барабан сепаратор, а затем в реактор, где к ней в изобарно (процессе 5-4 P1=const) подводится тепло. Вначале вода в реакторе нагревается до кипения (участок 5-4 изобары P1=const) а затем, по достижении температуры кипения, происходит процесс парообразования (участок 4-1 изобары P1=const). Пароводяная смесь поступает в барабан сепаратор где происходит разделение воды и пара. Насыщенный пар, из барабана сепаратора поступает в турбину. Процесс расширения в турбине изображается адиабатой 1-2 (Этот процесс относится к классическому циклу Ренкина в реальной установке процесс расширения пара в турбине несколько отличается от классического). Отработанный влажный пар поступает в конденсатор, и цикл замыкается.

С точки зрения термического к. п. д. цикл Ренкина представляете менее выгодным, чем цикл Карно, изображенный выше (рисунок 5) поскольку степень заполнения цикла (равно как и средняя температур подвода тепла) для цикла Ренкина оказывается меньше, чем в случае цикла Карно. Однако с учетом реальных условий осуществления экономичность цикла Ренкина выше экономичности соответствующего цикла Карно во влажном паре.

Ось ординат представляет собой логарифмическую шкалу, на которой нанесено значение давления в барах. В центре диаграммы расположена подковообразная линия, верхняя точка которой является критической и обозначена Скр. Эта линия разделяет плоскость диаграммы на 3 области. В области І (рис. 2.11) хладагент находится в жидком состоянии, в области ІІ – в парожидкостном (двухфазное состояние), в области III ‑ в состоянии перегретого пара.

В области ІІ проходят кривые x (кривые сухости), отмеченные показателем процентного содержания пара в смеси. Линия x = 0,1 соответствует состоянию газа с 10% содержанием пара и 90-процентным содержанием жидкости. Кривые x = 0 и x = 1 являются пограничными линиями. Линия х = 0 – это линия жидкого хладагента, а линия х = 1 – это линия пара. Обратим внимание на характер кривой постоянных значений температуры (рис. 2.12). В области І изотерма вертикальна, в области ІІ ‑ горизонтальна, а в области ІІІ – сначала криволинейна, а затем стремится стать вертикальной.

На диаграмме также изображены линии постоянного удельного объема (рис. 2.13) и линии постоянной энтропии (рис. 2.14). Для точного определения параметров термодинамического процесса пользуются lg P-h диаграммами [3], или выпускаемыми заводами-изготовителями хладагента. Как правило, эти диаграммы выполнены в крупном масштабе и очень точно, что позволяет использовать их для расчетов. Кроме того, имеются таблицы состояния хладагента при различных температурах, а также таблицы удельного объема, энтальпии и энтропии хладагента в различных состояниях (на линии насыщения, перегретого пара)

Рис. 2.11. Линии постоянной сухости на lg P-h диаграмме Рис. 2.12. Линии постоянной температуры (изотермы) на lg P-h диаграмме

 

Рис. 2.13. Линии постоянного удельного объема на lg P-h диаграмме Рис. 2.14. Линии постоянной энтропии на lg P-h диаграмме

· Степень сухости - это параметр, показывающий массовую долю насыщенного пара в смеси воды и водяного пара. Значение соответствует воде в момент кипения (насыщения). Значение , показывает, что в смеси присутствует только пар. При нанесении соответствующих точек в координатах , взятых из таблиц насыщения справочников свойств воды и водяного пара, при их соединении получаются кривые, соответствующие определённым степеням сухости. В таком случае, линия является нижней пограничной кривой, а - верхней пограничной кривой. Область, заключённая между этими кривыми, является областью влажного пара. Область ниже кривой , которая стягивается практически в прямую линию (не показана), соответствует воде. Область выше кривой - соответствует состоянию перегретого пара.

 

10.Способы распространения теплоты

Формы распространения теплоты

 

В природе существуют три способа передачи теплоты - излучение, конвекция, теплопроводность и два способа теплообмена между более нагретыми и менее нагретыми телами - лучистый и кон­вективный. Излучение - теплообмен между те­лами, находящимися на расстоянии друг от друга, посредством лу­чистой энергии, носителем которой являются электромагнитные волны (например, инфракрасное отопление). Интенсивность лучистого теплообмена между двумя телами за­висит от их формы, взаимного расположения, температуры и степени черноты. Наибольшей излучающей способностью при данной темпе­ратуре обладают тела, называемые абсолютно Черными. Лучистый поток от тел с меньшей излучательной способностью, чем у абсолютно черного тела (серые тела), в соответствии с законом Стефана—Больцмана, определяется формулой Фл = С0εS (T/100)4, где С0 - коэффициент излучения абсолютно черного тела, равный 4,9 ккал/(м2·ч·ºС)4; ε - степень черноты серого тела (для шероховатой стали ε = 0,944 - 0,97); S — площадь излучающей поверхности, м2. Конвекция - передача теплоты перемещением и перемешиванием частиц между собой. Различают свободную (естественную) и вынужден­ную (искусственную) конвекцию. Примером естественной конвекции является нагрев воздуха в квартире от радиаторов отопления, при котором часть теплоты передается излучением, а часть конвекцией воз­духу, который перемещается вблизи радиатора. Нагретый воздух поднимается в верхнюю зону помещения, а более тяжелый холодный воздух постоянно перемещается к нижней части помещения. Теплопроводность - передача теплоты внутри тела от более нагре­тых частиц к менее нагретым. Теплопроводность материала зависит от его химического состава, пористости, влажности, температуры и давления (для жидкостей и газов). Коэффициент теплопроводности λ - количество теплоты, передаваемое в единицу времени через единицу поверхности на единицу длины (пути) теплового потока при разности температуры 1 °С. Высокой теплопроводностью характеризуются металлы, особенно серебро, медь, алюминий. Коэффициент теплопроводности стали и чугуна составляет 40-50 ккал/(м·ч·°С). Плохо проводят теплоту изо­ляционные материалы, некоторые жидкости (масла, жиры), воздух, газы. Очень низкой теплопроводностью обладает накипь, которая откладывается на внутренних поверхностях котлов, и сажа, которая образуется при неполном сгорании топлива и накапливается на наруж­ных сторонах поверхностей нагрева. Количество теплоты, передаваемое через разделительную стенку, определяется формулой Q = KH Δt, где K - коэффициент теплопередачи, ккал/(м2·ч·°С); H - площадь поверхности теплообмена, м2; Δt - средний температурный напор (разность температур) между греющей и нагреваемой средой, °С. Коэффициент теплопередачи определяют по формуле: K = 1/(1/α1 + δстст + 1/α2), где α1 и α2 - коэффициент теплоотдачи от греющей среды к поверх­ности разделительной стенки и от внутренней поверхности стенки к нагреваемой среде, ккал/(м2·ч·°С); δст - толщина стенки, м; λст - коэффициент теплопроводности стенки, ккал/(м·ч·°С). Коэффициенты теплоотдачи α1 и α2 предетавляют собой сумму коэффициентов теплоотдачи конвекцией αк и излучением αл. Они за­висят от режима движения потока, плотности перемещаемой среды, размеров и формы каналов, взаимного направления потоков и дру­гих условий. Примерные значения коэффициентов теплоотдачи, ккал/(м2·ч·°С): от газов к стенке α1= 20-50; от стенки к водяному пару α2 = 500-3000, к некипящей воде α2 = 5000-15 000, а к кипя­щей воде еще выше. Слагаемые знаменателя приведенной формулы называются част­ными термическими сопротивлениями. Коэффициент линейного расширения α - величина, показываю­щая, на какую долю первоначальной длины l0 тело удлинится при нагре­вании его на 1 °С. Так, для железа α = 0,000012, для меди α = 0,000017. Зная первоначальную длину конструкции (трубы) l0 и коэффи­циент линейного расширения или сжатия при охлаждении, можно определить длину l при любой температуре t: l =l0(1± αt).

 

11.Закон Фурье. Коэффициент теплопроводности

.2.Закон Фурье

Согласно гипотезе Фурье, количество теплоты d2Qτ, проходящее через элемент изотермической поверхности dF за промежуток времени , пропорционально температурному градиенту :

. (9.4)

 

Здесь множитель λ называется коэффициентом теплопроводности. Знак минус указывает на то, что теплота передается в направлении уменьшения температуры. Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:

. (9.5)

 

Проекции вектора q на координатные оси соответствено

; ; .  

 

Уравнения (9.4) и (9.5) являются математическим выражением основного закона теплопроводности — закона Фурье.

Количество теплоты, проходящее в единицу времени через изотермическую поверхность F, называется тепловым потоком:

. (9.6)

 

Полное количество теплоты, прошедшее через эту поверхность за время τ, определится из уравнения

. (9.7)

9.3.Коэффициент теплопроводности

Коэффициент теплопроводности является физическим параметром вещества, характеризующим его способность проводить теплоту. Коэффициент теплопроводности определяется из уравнения (9.4):

. (9.8)


Численно коэффициент теплопроводности равен количеству теплоты, проходящему в единицу времени через единицу изотермической поверхности при условии gradt=1. Его размерность Вт/(м·К). Значения коэффициента теплопроводности для различных веществ определяются из справочных таблиц, построенных на основании экспериментальных данных. Для большинства материалов зависимость коэффициента теплопроводности от температуры приближенно можно выразить в виде линейной функции

. (9.9)

 

где λ0 — значение коэффициента теплопроводности при температуре t0=0 0С; b — постоянная, определяемая опытным путем.

Наихудшими проводниками теплоты являются газы. Коэффициент теплопроводности газов возрастает с увеличением температуры и составляет 0,006÷0,6 Вт/(м·К). Следует отметить, что верхнее значение относится к гелию и водороду, коэффициент теплопроводности которых в 5—10 раз больше, чем у других газов. Коэффициент теплопроводности воздуха при 0 0С равен 0,0244 Вт/(м·К).

Для жидкости λ=0,07÷0,7 Вт/(м·К) и, как правило, уменьшается с увеличением температуры. Коэффициент теплопроводности воды с увеличением температуры возрастает до максимального значения 0,7 Вт/(м·К) при t=120 0С и дальше уменьшается.

Наилучшими проводниками теплоты являются металлы, у которых λ=20÷418 Вт/(м·К). Самый теплопроводный металл — серебро. Для большинства металлов коэффициент теплопроводности убывает с возрастанием температуры, а также при наличии разного рода примесей. Поэтому коэффициент теплопроводности легированных сталей значительно ниже, чем чистого железа.

Материалы с λ<0,25 Вт/(м·К), обычно применяемые для тепловой изоляции, называют теплоизоляционными. Большинство теплоизоляционных и строительных неметаллических материалов имеют пористое строение, что не позволяет рассматривать их как сплошную среду.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.