Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Физические основы криоэлектроники

 

В криоэлектронных приборах используются различные явления: сверхпроводимость металлов и сплавов, зависимость диэлектрической проницаемости некоторых диэлектриков от электрического поля, появление у металлов при Т < 80 °К полупроводниковых свойств при аномально высокой подвижности электронов проводимости и др. Большинство современных криоэлектронных приборов основано на явлении сверхпроводимости, в частности, на эффекте Джозефсона, а также на явлении одноэлектронного туннелирования между сверхпроводниками.

Cверхпроводимость – физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже определенной критической температуры и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивании магнитного поля из объема образца. Сверхпроводимость открыта Х. Камерлинг-Оннесом в 1911 году.

Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. Рекордно высоким значением Тк (около 23 °К) обладает соединение Nb3Ge.

Скачкообразное исчезновение сопротивления при понижении температуры впервые наблюдал X. Камерлинг-Оннес на ртути (рис. 6.1).

 

 

Рис. 6.1. Зависимость сопротивления R от температуры Т для ртути (Hg) и для платины (Pt). Ртуть при Т = 4,12 °К переходит в сверхпроводящее состояние. R0°С - значение R при 0 °С

 

Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое вследствие его необычных электрических свойств может быть названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при включении достаточно сильного магнитного поля (его называют критическим магнитным полем Нк). Измерения показали, что падение сопротивления до нуля происходит на протяжении очень узкого, но конечного интервала температур.

Ширина этого интервала для чистых образцов составляет 10-3 - 10-4 °К и возрастает при наличии примесей и других дефектов структуры.

Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий с течением времени. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры Тк, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше чем 10-20Ом×см (сопротивление чистых образцов меди или серебра составляет около 10-9 Ом×см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, как это считалось ещё в течение более чем 20 лет после открытия сверхпроводимости. Существование значительно более глубокого различия между нормальным и сверхпроводящим состояниями металла стало очевидным, после того как немецкие физики В. Мейснер и Р. Оксенфельд (1933 г.) установили, что слабое магнитное поле не проникает в глубь сверхпроводника. Особенно важно, что это имеет место независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток. Это различие иллюстрирует рис. 6.2 (а, б, в), на котором схематически изображено распределение поля вблизи односвязного металлического образца на трёх последовательных этапах опыта: а - образец находится в нормальном состоянии, внешнее поле свободно проникает в глубь металла; б - образец охлаждается ниже Тк, магнитное поле выталкивается из сверхпроводника (верхний рисунок), тогда как в случае идеального проводника распределение поля оставалось бы неизменным (нижний рисунок); в - внешнее поле выключается, при этом исчезает и намагниченность сверхпроводника. В случае идеального проводника поток магнитной индукции через образец сохранил бы свою величину, и картина поля была бы такой же, как у постоянного магнита.

 

Рис. 6.2. Распределение магнитного поля около

сверхпроводящего шара и около шара с исчезающим

сопротивлением (идеальный проводник): а - Т > Тк; б - Т < Тк,

внешнее поле Нвн ¹ 0; в - Т < Тк, Нвн = 0

 

Выталкивание магнитного поля из сверхпроводящего образца (это явление обычно называют эффектом Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный диамагнетик той же формыс магнитной восприимчивостью c = - 1/4p. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, будет равен М = - Н/4p. Это примерно в 105 раз больше по абсолютной величине, чем удельная намагниченность диамагнитного металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < Нк в поверхностном слое сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника. Опыт показывает, что в случае больших образцов слабое магнитное поле в условиях эффекта Мейснера проникает в металл на глубину d @ 10-5 - 10-6 см,именно в этом слое течёт поверхностный ток.

По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, так называемые сверхпроводники 1-го и 2-го рода.

На рис. 6.3 и 6.4 в несколько идеализированной форме изображены кривые намагничивания М (Н), типичные для каждой из этих групп. Кривые относятся к случаю длинных цилиндрических образцов, помещенных в поле, параллельное оси цилиндра. При такой геометрии опыта отсутствуют эффекты размагничивания, и картина, поэтому является наиболее простой. Начальный прямолинейный участок на этих кривых, где М = -Н/4p, соответствует интервалу значений Н, на котором имеет место эффект Мейснера. Как видно из рисунка, дальнейший ход кривых М (Н) для сверхпроводников 1-го и 2-го рода существенно различается.

 

Рис. 6.3. Кривая намагничивания сверхпроводников 1-го рода

 

 

Рис. 6.4. Кривая намагничивания сверхпроводников 2-го рода

 

Сверхпроводники 1-го рода, которыми являются все достаточно чистые сверхпроводящие металлические элементы (за исключением V и Nb), теряют сверпроводимость при поле Н = Нк, когда поле скачком проникает в металл, и он во всём объёме переходит в нормальное состояние. При этом удельный магнитный момент также скачком уменьшается примерно в 105 раз. Критическому полю Нк можно дать простое термодинамическое истолкование. При температуре Т < Тк и в отсутствии магнитного поля свободная энергия в сверхпроводящем состоянии Fc ниже, чем в нормальном Fн. При включении поля свободная энергия сверхпроводника возрастает на величину H 2/8p, равную работе намагничивания, и при Н = Нк сравнивается с Fн (в силу малости магнитного момента в нормальном состоянии Fн практически не изменяется при включении поля). Таким образом, поле Нк определяется из условия равновесия в точке перехода:

 

Fc+ Н 2к/8p = Fн. (6.1)

 

Критическое поле Нк зависит от температуры: оно максимально при Т = 0 и монотонно убывает до нуля по мере приближения к Тк. На рис. 6.5 изображена фазовая диаграмма на плоскости (Н, Т). Заштрихованная область, ограниченная кривой Нк(Т), соответствует сверхпроводящему состоянию.

 

 

Рис. 6.5. Фазовая диаграмма для сверхпроводников

1-го и 2-го рода

 

По измеренной зависимости Нк(Т) могут быть рассчитаны все термодинамические характеристики сверхпроводника 1-го рода. В частности, из формулы (6.1) непосредственно получается (при дифференцировании по температуре) выражение для теплоты фазового перехода в сверхпроводящее состояние:

 

, (6.2)

 

где S - энтропия единицы объёма. Знак Q таков, что теплота поглощается сверхпроводником при переходе в нормальное состояние. Поэтому если разрушение сверпроводимости магнитным полем производится при адиабатической изоляции образца, то последний будет охлаждаться.

Скачкообразный характер фазового перехода в магнитном поле (рис. 6.3) наблюдается только в случае весьма специальной геометрии опыта: длинный цилиндр в продольном поле. При произвольной форме образца и других ориентациях поля переход оказывается растянутым по более или менее широкому интервалу значений Н: он начинается при Н < Нк и заканчивается, когда поле во всех точках образца превысит Нк. В этом интервале значений Н сверхпроводник 1-го рода находится в так называемом промежуточном состоянии. Он расслаивается на чередующиеся области нормальной и сверхпроводящей фаз, причём так, что поле в нормальной фазе вблизи границы раздела параллельно этой границе и равно Нк. По мере увеличения поля возрастает доля нормальной фазы и происходит уменьшение магнитного момента образца. Структура расслоения и характер кривой намагничивания существенно зависят от геометрических факторов. В частности, для пластинки, ориентированной перпендикулярно магнитному полю, расслоение начинается уже в слабом поле, гораздо меньшем, чем Нк.

С магнитными свойствами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток является поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения магнитного поля. Когда ток достигает некоторой критической величины, достаточной для создания критического магнитного поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрическое сопротивление.

К сверхпроводникам 2-го рода относится большинство сверхпроводящих сплавов. Кроме того, сверхпроводниками 2-го рода становятся и сверхпроводящие металлические элементы (сверхпроводники 1-го рода) при введении в них достаточно большого количества примесей. Картина разрушения сверхпроводимости магнитным полем является у этих сверхпроводников более сложной. Как видно из рис. 6.4, даже в случае цилиндрического образца в продольном поле происходит постепенное уменьшение магнитного момента на протяжении значительного интервала полей от Нк, когда поле начинает проникать в толщу образца, и до поля Нк, при котором происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа является необратимой (наблюдается магнитный гистерезис). Величина гистерезиса очень чувствительна к технологии приготовления образцов, и в некоторых случаях путём специальной обработки удаётся получить образцы с почти обратимой кривой намагничивания. Поле Нк часто оказывается весьма большим, достигая сотен тысяч эрстед. Что же касается термодинамического критического поля Нк, определяемого соотношением (6.1), то оно для сверхпроводников 2-го рода не является непосредственно наблюдаемой характеристикой. Однако его можно рассчитать, исходя из найденных опытным путём значений свободной энергии в нормальном и сверхпроводящем состояниях в отсутствии магнитного поля. Оказывается, что вычисленное таким способом значение Нк попадает в интервал между Нк1 и Нк2. Таким образом, проникновение магнитного поля в сверхпроводник 2-го рода начинается уже в поле, меньшем, чем Нк, когда условие равновесия (6.1) ещё нарушено в пользу сверхпроводящего состояния. Понять это парадоксальное на первый взгляд явление можно, если принять во внимание поверхностную энергию границы раздела нормальной и сверхпроводящей фаз. В случае сверхпроводников 1-го рода эта энергия положительна, так что появление границы раздела приводит к проигрышу в энергии. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные магнитные свойства сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит современная теория сверхпроводимости. При отрицательной поверхностной энергии уже при Н < Нкэнергетически выгодным является образование тонких областей нормальной фазы, ориентированных вдоль магнитного поля. Возможность реализации такого состояния сверхпроводника 2-го рода была предсказана А. А. Абрикосовым(1952 г) на основе теории сверхпроводимости В. Л. Гинзбурга и Л. Д. Ландау. Позднее им же был произведён детальный расчёт структуры этого состояния. Оказалось, что нормальные области зарождаются в форме нитей, пронизывающих образец и имеющих толщину, грубо говоря, сравнимую с глубиной проникновения магнитного поля. При увеличении внешнего поля концентрация нитей возрастает, что и приводит к постепенному уменьшению магнитного момента. Таким ообразом, в интервале значений поля от Нк1 до Нк2, сверхпроводник находится в состоянии, которое принято называть смешанным.

Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля.Прямые измерения теплоёмкости сверхпроводников при Н = 0 показывают, что при понижении температуры теплоёмкость в точке перехода Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности Тк (рис. 6.6). При этом теплота перехода Q = 0, что следует, в частности, из формулы (6.2) (Нк = 0 при Т = Тк). Таким образом, переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (6.2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой Нк(Т)(рис. 6.5) в точке Т = Тк:

 

, (6.3)

 

где СС и СН - значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.

 

 

Рис. 6.6. Скачок теплоёмкости сверхпроводника в точке

перехода (Тк) в отсутствии внешнего магнитного поля

(СС и СН - теплоёмкость в сверхпроводящем

и нормальном состояниях)

 

Совокупность экспериментальных фактов о сверпроводимости убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934 г.) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле - эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950 г), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока, заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* - заряд носителей сверхпроводящего тока, h - постоянная Планка , с - скорость света.В 1961 г. Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е - заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает эффект Купера , на основе которого в 1957 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопическую теорию сверхпроводимости. Согласно Куперу, два электрона с противоположными спинами при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются статистике Бозе - Эйнштейна. Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают так назывваемую бозе-конденсацию, и поэтому система куперовских пар обладает свойством сверхтекучести. Таким образом, сверпроводимсоть представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5kTk, где k - постоянная Больцмана . При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (фонона), в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет так называемую щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее, развитие теории сверхпроводимости стимулировало интенсивные теоретические поиски других механизмов. В этом плане особое внимание уделяется так называемым нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а, следовательно, - и более высокой температуры перехода в сверхпроводящее состояние.

Эффект Джозефсона – протекание сверхпроводящего тока через тонкий слой изолятора, разделяющий два сверхпроводника (так называемый контакт Джозефсона). Если ток не превышает критического значения, то падение напряжения на контакте отсутствует, если превышает – то возникает падение напряжения и контакт излучает электромагнитные волны (рис. 6.7).

Эффект предсказан на основе теории сверхпроводимости английским физиком Б. Джозефсоном в 1962 г, обнаружен американскими физиками П. Андерсоном и Дж. Роуэллом в 1963 г. Электроны проводимости проходят через диэлектрик (обычно плёнку оксида металла толщиной около 10 Å) благодаря туннельному эффекту. Туннелирование – прохождение через потенциальный барьер микрочастицы, энергия которой меньше высоты барьера.

 

 

Рис. 6.7. Схемы экспериментов, объясняющих эффект

Джозефсона: а - падение напряжения на включенном

в электрическую цепь сверхпроводнике равно нулю;

б - при значительной толщине диэлектрика, разделяющего сверхпроводники, тока в цепи нет, вольтметр показывает эдс батареи; в - при малом зазоре между сверхпроводниками

(около 10 Å) существует ток сверхпроводимости

(стационарный эффект Джозефсона)); г - при наличии тока в цепи и напряжения на контакте Джозефсона в нём возникает электромагнитное излучение (нестационарный эффект

Джозефсона)

 

Если ток через контакт Джозефсона не превышает определённого значения, называемого критическим током контакта, то падение напряжения на контакте отсутствует (так называемый стационарный эффект Джозефсона, см.рис. 6.7, в).

Если же через контакт пропускать ток, больший критического, то на контакте возникает падение напряжения V, и контакт излучает электромагнитные волны (нестационарный эффект Джозефсона,рис. 6.7, г). Частота излучения v связана с напряжением на контакте соотношением v = 2eV/h, где е - заряд электрона, h - постоянная Планка. Возникновение излучения связано с тем, что объединённые в пары электроны, создающие сверхпроводящий ток, при переходе через контакт приобретают избыточную по отношению к основному состоянию сверхпроводника энергию 2eV. Единственная возможность для пары электронов вернуться в основное состояние - это излучить квант электромагнитной энергии hv = 2eV.

Аналогичный эффект наблюдается и в том случае, когда сверхпроводники соединены тонкой перемычкой (мостиком или точечным контактом) или между ними находится тонкий слой металла в нормальном состоянии. Такие системы вместе с контактами Джозефсона называют слабосвязанными сверхпроводниками.

На основе эффекта Джозефсона созданы сверхпроводящие интерферометры, содержащие две параллельно включённые слабые связи между сверхпроводниками. Особый, квантовый характер сверхпроводящего состояния приводит к интерференции сверхпроводящих токов, прошедших через слабые связи. При этом критический ток оказывается зависящим от внешнего магнитного поля, что позволяет использовать такое устройство для чрезвычайно точного измерения, до 8·10-7 - 8·10-8 А/м (10-8 - 10-9 э), магнитных полей.

Имеются также возможности применения слабосвязанных сверхпроводников в качестве легко перестраивающихся в широком диапазоне частот маломощных генераторов, чувствительных детекторов, усилителей и др. приборов СВЧ- и далёкого ИК-диапазонов.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.