Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Вихревое электрическое поле



Если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся заряды.

Известно, что движение зарядов может происходить также под действием электрического поля Следовательно, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Дж. Максвелл.

Электрическое поле, создаваемое переменным магнитным полем, называется индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Дж. Максвелл обобщил представления М. Фарадея о явлении электромагнитной индукции, показав, что именно в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.

Индуцированное электрическое поле отличается от известных электростатического и стационарного электрического полей.

1. Оно вызвано не каким-то распределением зарядов, а переменным магнитным полем.

2. В отличие от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — замкнутые линии. Поэтому это поле — вихревое поле.

Исследования показали, что линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом левого винта:

если острие левого винта поступательно движется по направлению ΔΒ, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля (рис. 1).

Рис. 1

3. Индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна 0. Работа, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру, т.е. не потенциал, а ЭДС индукции является энергетической характеристикой индуцированного поля.

Первое уравнение Максвелла является обобщением закона электромагнитной индукции, которое в интегральной форме имеет вид

1. Из выражения для магнитного потока следует

Интеграл в правой части является функцией только от времени.

2. Неравенство нулю циркуляции вектора напряженности электрического поля по замкнутому контуру означает, что возбуждаемое переменным магнитным полем электрическое поле является вихревым, как и само магнитное поле.

3. Из первого уравнения Максвелла следует, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле.

4. По теореме Стокса в векторном анализе

где ротор вектора Е выражается определителем

что позволяет записать первое уравнение Максвелла в дифференциальном виде

Ток смещения

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Iсм) равны: Iсм =I.

Ток проводимости вблизи обкладок конденсатора

(138.1)

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе )Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения когда и dS взаимно параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение с , имеем

(138.2)

Выражение (138.2) и было названо Максвеллом плотностью тока смещения.

 

 

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденсатора (рис. 197, а) через проводник, соединя­ющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается; следовательно, >0, т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется; следовательно, <0, т. е. вектор направлен противоположно вектору D. Однако вектор направлен опять так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, а следовательно, и вектора jсм, совпадает с направлением вектора , как это и следует из формулы (138.2).

Подчеркнем, что из всех физических свойств, присущих току проводимости, Макс­велл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D=e0E+P, где Е – напряженность электростатического поля, а Р — поляризованность, то плотность тока смещения

(138.3)

где e0 плотность тока смещения в вакууме, плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в ди­электрике (смещение зарядов в неполярных молекулах или поворот диполей в поляр­ных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возник­новению в окружающем пространстве магнитного поля.

 

Следует отметить, что название «ток смещения» является условным, а точ­нее — исторически сложившимся, так как ток смещения по своей сути — это изменя­ющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А.А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.

Второе уравнение Максвелла представляет собой обобщение закона полного тока.

1.Второе уравнение Максвелла основано на предположении, что всякое изменение электрического поля вызывает возникновение в окружающем пространстве вихревого магнитного поля.

2.Количественной мерой магнитного действия переменного электрического поля является ток смещения.

3.Током смещения сквозь произвольную замкнутую поверхность S называется физическая величина, равная потоку вектора плотности тока смещения сквозь эту поверхность


с плотностью тока смещения

где D – вектор электрического смещения.

4.Токи смещения проходят по тем участкам цепи переменного тока, где отсутствуют проводники (например, между обкладок конденсатора).

5.В диэлектрике вектор электрического смещения равен

где Р – вектор поляризованности.
Тогда плотность тока смещения


где – плотность тока смещения в вакууме, а – плотность тока поляризации (смещение зарядов в молекулах неполярных диэлектриков или поворот диполей полярных диэлектриков).

6.Токи смещения не сопровождаются выделением теплоты.

7.Второе уравнение Максвелла в интегральной форме имеет вид

8.По теореме Стокса

а полный ток

вследствие чего в дифференциальном виде второе уравнение Максвелла имеет вид

 

14. Полная система уравнений Максвелла в интегральной форме.

Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зре­ния не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

В основе теории Максвелла лежат рассмотренные выше четыре уравнения:

1. Электрическое поле может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQB. Так как циркуляция вектора ЕQ равна нулю , а циркуляция вектора ЕB определяется выражением, то циркуляция вектора напряженности суммарного поля:

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущими­ся зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D:

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то эта формула запишется в виде:

4. Теорема Гаусса для поля В:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Мак­свелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

15)

Система уравнений Максвелла : диффер. форма. Материальные уравнения.

Теорией Максвелла назвывается последовательная теория единого электромагнитного поля, создаваемого произвольной системой электрических зарядов и токов. В теории Максвелла решается основная задача электродинамики :заданному распределению зарядов и токов отыскиваются характеристики создаваемых ими электрического и магнитного полей. Если мы из системы 4-х уравнений перейдем в проэкции на оси ( E - Ex Ey Ez, B - Bx By Bz), то не сможем решить ее, из-за большого кол-ва неизвестных. Для их нахождения пользуются так называемыми материальными уравнениями, характеризующими электрические и магнитные св-ва среды.

Анализ уравнений Максвелла. 1-е уравнение указывает на то, что поле является вихревым (вопр. 30). 2-е уравнение - Максвелл обобщил теорему Остроградского-Гаусса для электростатического поля. Он предположил, что она справедлива для любого электрического поля как стационарного, так и переменного. 3-е уравнение : См. ток смещения. В интегральной форме показывает, что циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков и тока смещения сквозь поверхность, натянутую на этот контур. 4-е уравнение - теорема Остроградского-Гаусса справедлива для любого магнитного поля.

Если электрические и магнитные поля стационарны (dD/dt = dB/dt = 0), то эти поля существуют независимо друг от друга. Электрическое поле описывается двумя уравнениями электростатики : rot E = 0 и div D

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.