Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Некоторые процессы, механизмы и кинетические модели

Типичные окислители и реакции

Окисление кислородом

а) Радикально-цепное жидкофазное окисление алкилароматических соединений (катализ комплексами металлов)

б) “Мерокс”-процесс

в) “Вакер”-процесс (окисление олефинов)

г) Реакция Моисеева (синтез винилацетата)

д) окислительное карбонилирование метанола

е) окислительная димеризация

Реакция Глязера-Залькинда:

Реакция Моритани-Фудживары:

ж) окислительное хлорирование

Окисление пероксидом водорода и гидропероксидами

а) Реакция Прилежаева

б) Эпоксидирование олефинов

в) Окисление аренов и фенолов

 

Pc* – замещенные фталоцианины

г) “Халкон”-процесс

Окисление О2 в гетерогенном катализе

а) окисление спиртов

б) окисление ароматических соединений

в) окисление алканов (окислительное дегидрирование)

г) окисление олефинов

д) окислительный аммонолиз парафинов и олефинов

е) реакция Моисеева в паровой фазе

ж) синтез аллилацетата

з) окислительная димеризация метана

и) окислительное хлорирование этилена

Появились и новые окислители, например, закись азота N2O. Бензол окисляется этим окислителем на цеолитах ZSM-5, содержащих железо, при 350 – 400оС. Селективность ~100%, конверсия 8 – 13%.

Недавно (в 2002 г) установлено (Г.И.Панов), что N2O в жидкой фазе без катализатора при давлении 10 атм и температурах 140 – 250оС окисляет олефины до кетонов с селективностью > 98%.

Некоторые процессы, механизмы и кинетические модели

“Вакер”-процесс.Реакция окисления олефинов до карбонильных соединений была открыта практически одновременно в Германии (группа доктора Юргена Смидта в фирме “Consortium für Electrochemie”) и И.И.Моисеевым, М.Н.Варгафтиком и Я.К.Сыр­киным в СССР (МИТХТ им. М.В.Ломоносова) в 1957 – 1959 гг. Реакция протекает в воде или водно-органических растворах комплексов Pd(II) и Cu(II) при атмосфер­ном давлении и температурах 70 – 95оС, например, синтез ацетальдегида:

(1)

Реакция (1) вызвала интерес у промышленных фирм, и уже в 1962 году фирма “Wacker Chemie” построила производство альдегида по этой реакции. В промышленных условиях используют давление 10 – 13 атм и температуру 110 – 120оС. Процесс (1) складывается из трех макростадий (2 – 4):

(2)

(3)

(4)

Таким образом, PdCl2 катализирует окисление этилена окислителем CuCl2 (стадии (2) и (3)), а CuCl2 катализирует окисление Pd0 кислородом (стадии 3, 4). Система PdCl2-CuCl2 является полифункциональным катализатором брутто-процесса (1). Интересно, что молекула воды также катализирует брутто-реакцию и является непременным участником процесса в этой каталитической системе. Поскольку скорость окисления Cu(I) кислородом достаточно велика, стационарность процесса обеспечивается равенством скоростей реакций (2) и (3). В условиях промышленного процесса скорость реакции (3) обеспечивает отсутствие Pd0 в форме металлической фазы, и скорость реакции (1) в определенных пределах не зависит от [CuCl2]. Вместо CuCl2 можно использовать другие промежуточные окислители, например, п-бензохинон, концентрация которого при определенном избытке также не влияет на скорость образования ацетальдегида. Эту систему и использовали для построения кинетической модели и изучения механизма реакции. Очевидно, таким образом, что главные события, приводящие к очень интересному превращению этилена с участием H2O, происходят в реакции (2).

Кинетическое уравнение для реакции (2) в присутствии п-бензохинона (Q) было получено в закрытой системе без газовой фазы (И.И.Моисеев и др.) и по поглощению этилена в двухфазном реакторе полного смешения волюмометрическим методом (П.Генри). В области концентраций PdCl2 до 0.02 М при постоянной ионной силе (I = 1 – 3) в системе NaCl – LiClO4 – HCl – HClO4 = Const Pd(II) находится преимущественно в форме PdCl42– , и закомплексованность Pd(II) этиленом не существенна. Скорость реакции (2) или реакции (5)

(5)

описывается уравнением (6)

(6)

Из уравнения (6) следует, что процесс протекает с лимитирующей стадией и что в стадиях до лимитирующей выделяются ион Н+ и два иона Cl при взаимодействии PdCl42– и C2H4. Для выяснения вопроса о том, из какой частицы выделяется Н+, провели опыты с меченым этиленом (C2D4) в H2O. Оказалось, что ацетальдегид содержит 4 атома D (CD3CDO) и, таким образом, Н+ может выделяться только из молекулы H2O. Схема механизма, соответствующая уравнению (6) и подтвержденная независимым исследованием равновесий в этой системе, включает стадии

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Механизм лимитирующей стадии (10) и механизм стадии (11) до сих пор являются предметом дискуссий.

Для расчетов промышленного реактора в случае системы PdCl2-CuCl2 в условиях постоянной концентрации HCl по длине трубчатого реактора (труба в трубе) используют несколько измененное уравнение, найденное экспериментально на основе уравнения (6). Скорость накопления ацетальдегида (САА) или исчезновения этилена вдоль трубы длиной l описывают уравнением

. (14)

где d – внутренний диаметр трубы, м; Vсм – объем смеси этилена и раствора, поступающего в трубу, Vсм @ 0.5 м3/сек; [С2Н4]l – концентрация этилена вдоль трубы в молях на м3, рассчитываемая по найденной зависимости [С2Н4]l = f (T, P)

,

где , rсм – плотность смеси в кг/м3; , P0 – общее давление смеси, DP – понижение давления по длине трубы; l – длина трубы.

 

Синтез винилацетата (реакция Моисеева). Реакция окислительной этерификации или окислительного ацетоксилирования олефинов

(15)

была открыта в МИТХТ им. Ломоносова в 1960 г. Реакция осуществляется в растворах солей PdCl2-CuCl2 и Cu(OAc)2 в уксусной кислоте в присутствии NaOAc. Температура процесса 110 – 130оС и давление 3.0 – 4.0 МПа. Селективность по этилену – 83%. Кинетическое уравнение получено Моисеевым и Беловым в системе, не содержащей CuCl2 (16)

(16)

в предположении, что в условиях квадратичного торможения ацетатом натрия весь Pd(II) находится в форме комплекса Na2Pd(OAc)4. В работе П.Генри приведена другая форма уравнения (16) в предположении, что активной формой Pd(II) является димер Na2Pd2(OAc)6, концентрация которого проходит через максимум по [NaOAc]

(17)

Процесс синтеза винилацетата по реакции (15) протекает в рамках механизма, аналогичного “Вакер”-процессу. Предполагается превращение p-комплекса Pd(II) в s-палладийорганическое соединение под действием OAc из раствора, а распад полученного интермедиата включает стадию b-элиминирования ~PdH

, (18)

где [Pd] – мономерный или димерный комплекс Pd(II). Окислением H-[Pd] и заканчивается каталитический цикл.

Фирмы Hoechst и др. разработали для реакции (15) гетерогенный катализатор, содержащий соли Pd(II), Au(III) и KOAc на Al2O3. Процесс протекает при 175 – 200 оС и давлении 0.5 – 1.0 МПа с высокой селективностью: 94% по этилену и 98% по уксусной кислоте. Состояние Pd(II) в условиях процесса и роль соединений золота пока не ясны.

 

Халкон-процесс. Эпоксидирование олефинов гидропероксидами осуществляется в промышленном варианте в растворах комплексов Mo(VI). В качестве ROOH используют 2-этилфенилгидропероксид (гидропероксид этилбензола, ГПЭБ), гидропероксид кумила (ГПК) и третбутилгидропероксид (ТБГП). В случае ГПЭБ сопряженно с пропиленоксидом получают стирол:

(18)

(19)

Скорость реакции (18) описывается уравнением (20)

(20)

где FMo = 1 + KГПЭБ[ГПЭБ] + KМФК[МФК] + KОП[ОП] + KH2O[H2O] есть закомплексованность катализатора, МФК – метилфенилкарбинол, ОП – пропиленоксид. Ki – константы равновесия образования соответствующих комплексов Mo. Как видно из уравнения (20), процесс протекает с лимитирующей стадией, переходное состояние которой включает ГПЭБ, Mo(VI) и пропилен. Показано, что активным катализатором является пропиленгликолятный комплекс Mo(VI), реакция которого с ГПЭБ и C3H6 приводит к ОП.

Мерокс-процесс. Реакция окислительной димеризации меркаптанов

(21)

является основой процесса демеркаптанизации природного газа, попутных газов и нефтяных фракций, разработанного фирмой UOP. В водных растворах комплексов Co(II) (Pc*Co, Pc* – замещенный сульфофталоцианин) в присутствии NaOH происходит процесс образования радикалов RS·, димеризация которых дает RS-SR.

Образующиеся Co(III) и H2O2 также окисляют RSH до RS-SR, и в результате получается реакция (21). Нерастворимый дисульфид отделяется от воды, а водный раствор NaOH с катализатором направляется на экстракцию RSH из газа и нефти.

 

Окислительная димеризация алкинов (реакция Глязера-Залькинда) занимает важное место в синтетической химии.

(22)

В этой реакции, в отличие от Вакер-процесса, оба компонента каталитической системы Cu(I) и Cu(II) принимают участие в образовании продукта, а О2 (или другой окислитель, Q, Fe(CN)63– и т.д.) регенерирует необходимую для реакции форму Cu(II). Дегидроконденсацию алкинов можно провести в электрохимической системе (в анодной камере электролизера), например, по реакции

При использовании в качестве окислителя Cu(OAc)2 в Ру реакция является автокаталитической. В системе CuCl-CuCl2-LiCl-H2O при большом избытке LiCl (т.е. при постоянной концентрации Cl) скорость димеризации метилацетилена описывается уравнением

, (23)

свидетельствующем о наличии лимитирующей стадии и аниона RCºC в переходном состоянии лимитирующей стадии

[(RCºC)·2Cu(I)·Cu(II)]

Таким образом, продукт превращения интермедиата RCºCCu·CuCl в реакции с CuCl21) и является интермедиатом, участвующим в образовании диалкина. Предполагается следующая схема реакции:

(24)

(25)

(26)

(27)

Образование радикала RCºC· в стадии (26) (с его последующей димеризацией) не проходит по термохимическим соображениям. В Мерокс-процесе стадия с участием RS· возможна. Похожая на (22) реакция димеризации HCN также осуществляется в растворах Cu(I)-Cu(II)

(28)

Гидролиз дициана дает оксамид NH2COCONH2 – очень ценное удобрение.

 

Синтез оксида этилена. Этиленоксид (ЭО) получают по реакции (29)

(29)

на серебряных катализаторах 15% Ag/a-Al2O3 при 240 – 270оС и давлении 3МПа. При конверсии этилена < 10% селективность 80 – 85%. Побочная реакция – глубокое окисление этилена до СО2. Селективность процесса повышают добавками Cl (NaCl) в катализатор или добавками дихлорэтана в сырье в количестве 2 – 10 ppm. СО2 образуется из С2Н4 и при окислении ЭО, поэтому химизм процесса определяется совокупностью параллельно-последовательных реакций

Обсуждаются различные гипотезы о механизме процесса, предполагающие образование СО2 на тех же центрах ZO2, на которых образуется ЭО, или участие разных центров в образовании ЭО (ZO2) и СО2 (ZO). Скорость расходования О2 в области PC2H4> 0.9 атм на промотированном хлором катализаторе описывается уравнением первого порядка по РО2(лимитирует адсорбция О2). При РО2> 0.5 атм и PC2H4≤ 0.02

(30)

Для очень простой схемы

(31)

Из уравнения (31) получаются оба частных случая. Процесс тормозится ЭО и СО2, поэтому, например, при PC2H4> 0.9 атм в условиях первого порядка по РО2

(32)

Если поверхностные соединения серебра и кислорода представить в виде химических соединений, то центрам Z, ZO2 и ZO можно сопоставить Ag2O, Ag2O3 и Ag2O2, соответственно. Имеются и другие представления об адсорбированных на поверхности серебра формах кислорода, в том числе и об участии в реакции атомов кислорода (или О), находящихся в приповерхностном слое.

 

Окисление спиртов. Окисление (или окислительное дегидрирование) спиртов на металлических и окисных катализаторах до альдегидов и кетонов является важным промышленным процессом.

Рассмотрим подробнее процесс окисления метанола до формальдегида

(33)

В промышленности реализованы два варианты процесса окисления:

§ на оксидах MoO3-Fe2O3 (и др. оксидных катализаторах) процесс протекает в кинетической области при 300 – 350оС и 15-кратном избытке воздуха по отношению к метанолу. При этом достигаются 100% превращение спирта, высокая селективность и синтез безметанольного формальдегида, необходимого для процессов его полимеризации.

§ На серебряных катализаторах (мелкокристаллическое серебро, Ag/пемза, Ag/a-Al2O3 и др.) процесс протекает в адиабатическом режиме в тонком слое катализатора (8 – 10 см) во внешнедиффузионной области. Количество подаваемого кислорода ~0.9 от стехиометрии.

И основная реакция (33), и побочная реакция (34)

(34)

– экзотермические процессы. Эндотермический процесс дегидрирования (35), который имеет место в условиях процесса

(35)

не компенсируют большого количества выделяющегося тепла. Поэтому при низких температурах (220 – 250оС) процесс протекает в кинетическом режиме, однако при больших нагрузках по спирту и небольшом количестве воздуха процесс не удерживается в изотермическом режиме, и начинается быстрый подъем температуры, обусловленный плохим отводом тепла и повышением температуры зерна катализатора Тз. Повышение Тз вызывает экспоненциальный рост скорости, рост количества выделяющегося тепла qподв (ккал/(л·час)) и еще больший рост Тз, который останавливается в новом стационарном состоянии при высоком градиенте ТзTf (Tf – температура газа), обеспечивающем равенство отводимого и подводимого тепла qподв @ qотв. Таким образом:

o в области низких температур Тз @ Tf, qподв @ qотв, процесс протекает в кинетической области (область i);

o при повышении Тз возникает неустойчивый режим (область n);

o при Тз > Tf режим адиабатический (qподв @ qотв), внешнедиффузионная область, режим “зажигания”, работает тонкий слой катализатора (область k).

Температуру адиабатического разогрева можно оценить по уравнениям

; ,

где a – объемный коэффициент теплоотдачи (кал/(л·час·гр)), Q – количество выделяемого тепла (кал/моль), Cfb – скорость реакции в диффузионном режиме, b – коэффициент скорости диффузии, Cf – концентрация спирта в потоке.

При равенстве qподв = qотв,

, (36)

где n – теплоемкость, кал/(л·гр).

Режим зажигания устанавливается при

, где ,

Е – наблюдаемая энергия активации процесса.

В режиме диффузионного “зажигания” Tf = 650 – 700оС, Тз = 900 – 1000оС, но при малых временах контакта селективность процесса достигает 95% при 90% конверсии метанола. Полученный в результате абсорбции водой раствор 40% формальдегида (формалин) можно использовать как товарный продукт.

 

Окислительное хлорирование этилена до дихлорэтана. Процесс синтеза дихлорэтана (ДХЭ) по реакции (37)

(37)

протекает в области 325 – 525оС (лучше 350 – 400оС) на меднохлоридных катализаторах CuCl-KCl/SiO2 или CuCl2/g-Al2O3 практически при 100% конверсии HCl с выходом ДХЭ по этилену ~ 96%. Дихлорэтан образуется на поверхности катализатора без участия свободного Cl2. Механизм реакции изучен весьма детально. Схема механизма приведена ниже для второго катализатора.

Если вектор стехиометрических чисел стадий маршрута равен |2 2 2 2 1 1|, получим итоговое уравнение (37). Скорость образования ДХЭ описывается уравнением (38) с учетом 2-х медленных стадий (3) и (5):

, (38)

где .

При PHCl ³ 2 кПа реализуется нулевой порядок по PHCl, и при определенных соотношениях констант уравнение (38) преобразуется к виду (39)

(39)

14.3. Реакции окисления в промышленной
неорганической химии

Каталитические процессы активно применяются для окисления неорганических соединений с целью получения полезных продуктов и для очистки газовых выбросов и водных стоков.


(процессы дожигания СО, очистка воздуха помещений)


(получение серы, очистка природного и попутных газов от H2S)


(процесс Клауса, очистка газовых выбросов и синтез серы)


(производство H2SO4)


(производство HNO3)


(Дикон-процесс, синтез Cl2)


(производство HNO3)


(производство N2O)


(очистка стоков)

Рассмотрим в качестве примера реакцию (Н4):

(40)

На двух различных катализаторах Fe2O3/SiO2 (1) и V2O5–K2SO4/Al2O3 (2) скорость реакции описывается кинетическим уравнением (41), полученным для случая неоднородной поверхности.

(41)

где a' = 0.75 и b' = 0.25 для железооксидного катализатора (1) и a' = 0.4 и b' = 0.6 для ванадийоксидного катализатора (2).

Схема механизма, соответствующая уравнению (41)

лимитирующая стадия

Реакции окисления SO2 на Pt (H4), NO и NH3 на Pt-Rh (H5 и H7) протекают в адиабатическом режиме диффузионного “зажигания”.

 

Вопросы для самоконтроля

1) Привести варианты классификации реакций окисления.

2) Назвать окислители, используемые в промышленных процессах и в синтетической органической химии.

3) Привести примеры гомогенно-каталитического окисления пероксидом водорода и гидропероксидом.

4) Из каких макростадий (блоков элементарных стадий) состоит Вакер-процесс?

5) Кинетика и механизм первого блока стадий Вакер-процесса.

6) Условия проведения реакции Моисеева в гомогенном и гетерогенном вариантах.

7) Записать механизм и вывести кинетическое уравнение (20) для Халкон-процесса.

8) Основные стадии Мерокс-процесса.

9) Чем отличаются механизмы окислительной димеризации RSH и RCºCH?

10) Получите кинетическое уравнение окисления этилена до этиленоксида (32) при больших PC2H4.

11) Почему происходит адиабатическое зажигание и переход во внешнедиффузионную область в процессе окисления спиртов на серебряных катализаторах?

12) Объясните суть химических процессов, имеющих место в стадии (4) в схеме образования дихлорэтана.

13) Перечислить основные промышленные каталитические процессы окисления в неорганической химии.

 

Литература для углубленного изучения

1. Гейтс Б., Кетцир Дж., Шуйт Г., Химия каталитических процессов, М, Мир, 1981.

2. Темкин О.Н., Химия и технология металлокомплексного катализа, М., МИТХТ, 1980, ч. III.

3. Моисеев И.И., p-Комплексы в жидкофазном окислении олефинов, М., Наука, 1970, 240 с.

4. Моисеев И.И., Достижения и проблемы окислительного катализа (катализ соединениями палладия), в книге: “Chemical Eng. Science for Advanced Technologies”, Proceed. of Second Session of Continuing Educ. School, Moscow, Karpov Inst. of Physical Chem., ed. V.A.Makhlin, 1996, p. 37 – 73.

5. Толстиков Г.А., Реакции гидроперекисного окисления, М., Наука, 1976, с. 5 – 75, 96 – 114.

6. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И., Химическая кинетика, М., Химия, 2000.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.