Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Зонная структура металлов, диэлектриков и полупроводников



 

Нами показано, что твердые тела имеют многозонный спектр энергии. Зонная теория твердых тел стала путеводной звездой для ученых и инженеров работающих в области твердотельной электроники, она позволяет не только объяснить удивительные свойства полупроводников но и позволяет предсказать как их можно радикально изменить. Представим себе кристалл, состоящий из N одинаковых элементов, каждый из которых содержит z электронов. Все эти электроны размещаются на энергетических уровнях соответствующих зонам кристалла. В первую очередь заполняются электронами зоны с наименьшей энергией, это электроны находящиеся непосредственно возле ядер, затем заполняются зоны с более высокими энергиями, пока не будут размещены все zN электроны. На каждом энергетическом уровне свободного (изолированного) атома могут находиться 2(2l+1) электронов: на s (l = 0) 2 электрона, на p (l = 1) 6 электронов, на d (l = 2) 10 электронов. При сближении атомов на месте одиночных уровней , , , , , образуются энергетические зоны: 1s, 2s, 2p, 3s, 3p, 3d… В каждой зоне N энергетических уровней, значит s – зоны могут вместить 2N электронов, p – зоны 6N электронов, d – зоны 10N электронов и т.д. (смотри рисунок).

В зависимости от характера заполнения электронами верхней зоны все твердые тела делятся на три группы: металлы, диэлектрики, и полупроводники. У некоторых твердых тел самая верхняя зона, содержащая электроны может быть заполнена частично, т.е. у нее имеется часть свободных уровней. Приложим к такому кристаллу внешнее электрическое поле, известно, что в конце длины свободного пробега под действием внешнего электрического поля, электроны приобретают энергию от 10-4 до 10-8 эВ. Эта энергия значительно больше, чем расстояние между соседними уровнями зоны (10-22 эВ). В связи с этим электроны верхней зоны переходят на свободные уровни с более высокой энергией (смотри рисунок). При этом электрон пространственно смещается по направлению против электрического поля, что указано стрелкой. Если смещающиеся электроны непрерывно отводить от тела, что возможно в электрической замкнутой цепи, то квантовые переходы электронов, которые указаны стрелкой, будут происходить непрерывно долго, пока в цепи будет источник внешнего поля. Таким образом, твердые тела с указанным характером заполнения верхней зоны будут хорошо проводить электрический ток, такие тела являются металлами. При этом проводимость металла не возрастает с ростом температуры, наоборот, с понижением температуры электропроводность увеличивается. При комнатной температуре проводимость “хороших” металлов .

Представим себе кристаллы Na, их атомы имеют следующую электронную структуру: Na(z = 11) = 1s2 2s2 2p6 3s1. Видно, что уровень 3s содержит один валентный электрон. При образовании кристалла Na энергетические уровни , , , превращаются в зоны 1s, 2s, 2p, 3s. Последняя зона 3s будет содержать N электронов, а способна вместить 2N электронов, следовательно, последняя зона будет заполнена на половину, следовательно, кристаллы Na будут являться металлами. У некоторых кристаллов металлическая проводимость обусловлена тем, что самая верхняя зона, заполненная электронами перекрывается со следующей пустой зоной.

У многих твердых тел самая верхняя зона содержащая электроны может быть заполнена полностью электронами, а следующая за ней зона полностью пустая и отделена от предыдущей зоны большим промежутком запрещенных энергий . Такие твердые тела получили название диэлектриков (изоляторов).

В этом случае основная полностью заполненная зона называется валентной (V – зона), а следующая за ней пустая зона разрешенных энергий называется зоной проводимости (C – зона). Промежуток запрещенных энергий, который разделяет валентную зону и зону проводимости называется запрещенной зоной. Ширина этого промежутка ,где - дно зоны проводимости, - потолок валентной зоны. При T = 0 K0 диэлектрик не проводит электрический ток. При повышении температуры диэлектрика, электроны валентной зоны начинают взаимодействовать с колебаниями кристаллической решетки и получают от нее энергию ~ KT, но некоторые электроны получают значительно большую энергию. Процесс передачи энергии электронам – статистический. Тем неменее, число электронов, которые получают от решетки энергию ничтожно мало. Значит, будет ничтожно мало число электронов, которые способны перейти за счет тепловых переходов из валентной зоны в зону проводимости. Таким образом, твердое тело с большой шириной запрещенной зоны плохо проводит электрический ток, их проводимость примерно равна , в лучшем случае электропроводность может быть активирована высокой температурой. Исходя из зонной схемы диэлектрика, можно сказать, что валентная зона и зона проводимости не перекрываются.

Если у твердого тела при T = 0 K0 самая верхняя зона полностью заполнена, а следующая за ней зона проводимости пустая и отделена от предыдущей зоны не широким промежутком запрещенных энергий , то твердое тело называется полупроводником. Как видно принципиальной разницы между диэлектриком и полупроводником нет. При достаточно высоких температурах у полупроводников могут иметь место тепловые переходы из валентной зоны в зону проводимости за счет взаимодействия валентных электронов с ионами кристаллической решетки. Электроны, перешедшие из валентной зоны в зону проводимости, могут участвовать в переносе электрического тока. Появившиеся свободные уровни в валентной зоне (вакансии) будут также участвовать в переносе электрического тока. Носителями тока в валентной зоне являются дырки. Таким образом, проводимость полупроводника является активированной. При T = 0 K0 полупроводники как и диэлектрики не проводят электрический ток. Чем меньше , тем выше при прочих равных условиях электропроводность полупроводника. Электропроводность полупроводника лежит в широком диапазоне значений:

.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.