Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Сильные и слабые электролиты



Саратовский государственный технический университет

 

Электролитическая диссоциация

 

Методические указания

к выполнению лабораторных работ

по общей химии

для студентов всех специальностей

 

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

 

Саратов 2003

 

 

Цель работы: экспериментально проверить некоторые основные положения теории электролитической диссоциации и свойства различных электролитов, научиться определять направление протекания химических реакций.

 

ОСНОВНЫЕ ПОНЯТИЯ

 

Все вещества можно разделить на две группы: электролиты и неэлектролиты. Растворы электролитов, в отличие от неэлектролитов, вследствие диссоциации способны проводить электрический ток

Электролитической диссоциацией называется процесс распада молекул электролитов на положительно и отрицательно заряженные ионы под действием полярных молекул растворителя. Ионы, образовавшиеся при диссоциации, являются проводниками электрического тока. В связи с этим электролиты называют проводниками электричества второго рода, в отличие от проводников первого рода - металлов, в которых электричество переносится посредством электронов. К электролитам относятся соли, кислоты, основания, оксиды.

 

Механизм процесса электролитической диссоциации

Впервые представления о диссоциации электролитов были высказаны шведским ученым Сванте Аррениусом, который объяснил отклонения свойств растворов электролитов от законов Рауля и Вант-Гоффа процессом распада молекул на ионы. Представления о механизме процесса электролитической диссоциации сложились в дальнейшем на основе использования наряду с теорией Аррениуса сольватной теории растворов Д.И.Менделеева, работ И.А.Каблукова.

Вещества ионного характера - соли, диссоциируют в процессе растворения в воде ( и других полярных растворителях). Молекулы растворителя вытягивают с поверхности кристалла соли в результате ион-дипольного взаимодействия в первую очередь положительно заряженные ионы, что влечет за собой выпадение из решетки отрицательно заряженных ионов с последующей их гидратацией. Под действием теплового движения происходит переход в раствор гидратированных ионов. Таким образом, при растворении происходит просто распад систем связанных между собой ионов в кристалле на составляющие. Это объясняется тем, что силы ион-дипольного взаимодействия превосходят кулоновские силы взаимодействия ионов в кристаллической решетке. Например, при растворении в воде кристалла KCl процесс диссоциации ионов можно представить в виде схемы (рис.1) и записать:

KCl + mH2O = K+×pH2O + Cl-×qH2O

или в упрощенном виде KCl = K+ + Cl-

Рис. 1. Схема диссоциации ионных соединений

Несколько иначе диссоциируют электролиты, молекулы которых образованы по типу полярной ковалентной связи, например, кислоты. Образование ионов кислотами происходит лишь при растворении в полярных растворителях. Так, например, концентрированная серная кислота в жидком виде ионов не содержит и электрического тока не проводит. Образование ионов происходит в результате растворения её в воде:

H2SO4 + H2O = OH+3 + HSO-4

OH+3 - это гидратированный протон H+×OH2 или ион гидроксония. Для простоты ион гироксония условно обозначается символом H+ и уравнение диссоциации H2SO4 записывается упрощенно

H2SO4 ® H+ + HSO-4.

Таким образом, диссоциация веществ с полярной связью происходит через стадию ионизации молекул (рис. 2).

Рис. 2. Схема диссоциации полярных молекул

Электролитическая диссоциация протекает самопроизвольно, то есть энергия системы понижается ( DG < 0), что обусловлено образованием сольватированных ионов. Энергия взаимодействия молекул растворителя с растворенным веществом - энергия сольватации превосходит энергию химических связей в молекулах или ионных кристаллах.

 

Сильные и слабые электролиты

В растворах некоторых электролитов диссоциируют лишь часть молекул. Для количественной характеристики силы электролита было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного вещества называется степенью диссоциации a.

a = С/С0 ,

где С - концентрация продиссоциированных молекул, моль/л;

С0 - исходная концентрация раствора, моль/л.

По величине степени диссоциации все электролиты делятся на сильные и слабые. К сильным электролитам относятся те, степень диссоциации которых больше 30% (a > 0,3). К ним относятся:

· сильные кислоты (H2SO4, HNO3, HCl, HBr, HI);

· растворимые гидроксиды, кроме NH4OH;

· растворимые соли.

Электролитическая диссоциация сильных электролитов протекает необратимо

HNO3 ® H+ + NO-3 .

Слабые электролиты имеют степень диссоциации меньше 2% (a< 0,02). К ним относятся:

· слабые неорганические кислоты (Н2СО3 , Н2S, НNO2, HCN, H2SiO3 и др.) и все органические, например, уксусная кислота (CH3COOH);

· нерастворимые гидроксиды, а также растворимый гидроксид NH4OH;

· нерастворимые соли.

Электролиты с промежуточными значениями степени диссоциации называют электролитами средней силы.

Степень диссоциации (a) зависит от следующих факторов:

от природы электролита, то есть от типа химических связей; диссоциация наиболее легко происходит по месту наиболее полярных связей;

от природы растворителя - чем полярнее последний, тем легче идет в нем процесс диссоциации;

от температуры - повышение температуры усиливает диссоциацию;

от концентрации раствора - при разбавлении раствора диссоциация также увеличивается.

В качестве примера зависимости степени диссоциации от характера химических связей рассмотрим диссоциацию гидросульфата натрия (NaHSO4), в молекуле которого имеются следующие типы связей: 1-ионная; 2 - полярная ковалентная; 3 - связь между атомами серы и кислорода малополярная. Наиболее легко происходит разрыв по месту ионной связи (1):

 

Na 1 O 3 O S 3 H 2 O O 1. NaHSO4 ® Na+ + HSO-4 , 2. затем по месту полярной связи меньшей степени: HSO-4 ® H+ + SO2-4 . 3. кислотный остаток на ионы не диссоциирует.

 

Степень диссоциации электролита сильно зависит от природы растворителя. Например, HCl сильно диссоциирует в воде, слабее в этаноле C2H5OH, почти не диссоциирует в бензоле, в котором практически не проводит электрического тока. Растворители с высокой диэлектрической проницаемостью (e) поляризуют молекулы растворенного вещества и образуют с ними сольватированные (гидратированные) ионы. При 250С e(H2O) =78,5, e(C2H5OH) = 24,2, e(C6H6) = 2,27.

В растворах слабых электролитов процесс диссоциации протекает обратимо и, следовательно, к равновесию в растворе между молекулами и ионами применимы законы химического равновесия. Так, для диссоциации уксусной кислоты

CH3COOH « CH3COO- + H+.

Константа равновесия Кс будет определяться как

Кс = Кд = СCH3COO- · С H+ / СCH3COOH.

Константу равновесия (Кс) для процесса диссоциации называют константой диссоциации (Кд). Её значение зависит от природы электролита, растворителя и от температуры, но от концентрации электролита в растворе она не зависит. Константа диссоциации представляет собой важную характеристику слабых электролитов, так как она указывает на прочность их молекул в растворе. Чем меньше константа диссоциации, тем слабее диссоциирует электролит и тем устойчивее его молекулы. Учитывая, что степень диссоциации в отличие от константы диссоциации изменяются с концентрацией раствора, необходимо найти связь между Кд и a. Если исходную концентрацию раствора принять равной С, а степень диссоциации, соответствующую этой концентрации a, то число продиссоциированных молекул уксусной кислоты будет равна a · С. Так как

СCH3COO- = С H+ = a · С,

тогда концентрация нераспавшихся молекул уксусной кислоты будет равна (С - a · С) или С(1- a · С). Отсюда

Кд = aС · a С /(С - a · С) = a2С / (1- a). (1)

Уравнение (1) выражает закон разбавления Оствальда. Для очень слабых электролитов a<<1, то приближенно К @ a2С и

a = (К / С). (2)

Как видно из формулы (2), с уменьшением концентрации раствора электролита (при разбавлении) степень диссоциации увеличивается.

Слабые электролиты диссоциируют по ступеням, например:

1 ступень H2СO3 « H+ + НСO-3 ,

2 ступень НСO-3 « H+ + СO2-3 .

Такие электролиты характеризуются несколькими константами - в зависимости от числа ступеней распада на ионы. Для угольной кислоты

К1 = Сн+ · СНСО-2 / СН2СО3 = 4,45×10-7; К2 = Сн+ · ССО2-3/ СНСО-3 = 4,7 ×10-11.

Как видно, распад на ионы угольной кислоты определяется, главным образом, первой стадией, а вторая может проявляться только при большом разбавлении раствора.

Суммарному равновесию H2СO3 « 2H+ + СO2-3 отвечает суммарная константа диссоциации

Кд = С2н+ · ССО2-3/ СН2СО3.

Величины К1 и К2 связаны друг с другом соотношением

Кд = К1 · К2.

Аналогично ступенчато диссоциируют основания многовалентных металлов. Например, двум ступеням диссоциации гидроксида меди

Cu(OH)2 « CuOH+ + OH-,

CuOH+ « Cu2+ + OH-

отвечают константы диссоциации

К1 = СCuOH+ · СОН- / СCu(OH)2 и К2 = Сcu 2+ · СОН- / СCuOH+.

Так как сильные электролиты диссоциированы в растворе нацело, то сам термин константы диссоциации для них лишен содержания.

 

Диссоциация различных классов электролитов

С точки зрения теории электролитической диссоциации кислотойназывается вещество, при диссоциации которого в качестве катиона образуется только гидратированный ион водорода Н3О (или просто Н+).

Основаниемназывается вещество, которое в водном растворе в качестве аниона образует гидроксид-ионы ОНи никаких других анионов.

Согласно теории Бренстеда, кислота - это донор протонов, а основание - акцептор протонов.

Сила оснований, как сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации, тем сильнее электролит.

Существуют гидроксиды, способные вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями. Такие гидроксиды называются амфотерными . К нимотносятся Be(OH)2 , Zn(OH)2, Sn(OH)2, Pb(OH)2, Cr(OH)3, Al(OH)3. Свойства их обусловлены тем, что они в слабой степени диссоциируют по типу кислот и по типу оснований

H+ + RO- « ROH « R+ + OН-.

Это равновесие объясняется тем, что прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Поэтому при взаимодействии гидроксида бериллия с соляной кислотой получается хлорид бериллия

Be(OH)2 + HCl = BeCl2 + 2H2O ,

а при взаимодействии с гидроксидом натрия - бериллат натрия

Be(OH)2 + 2NaOH = Na2BeO2 + 2H2O.

Соли можно определить как электролиты, которые в растворе диссоциируют с образованием катионов, отличных от катионов водорода, и анионов, отличных от гидроксид-ионов.

Средние соли, получаемые при полном замещении ионов водорода соответствующих кислот на катионы металла (либоNH+4 ), диссоциируют полностью Na2SO4 « 2Na+ + SO2-4.

Кислые соли диссоциируют по ступеням

1 ступень NaHSO4 « Na+ + HSO-4,

2 ступень HSO-4 « H+ + SO2-4.

Степенью диссоциации по 1-й ступени больше, чем по 2-й ступени, причем, чем слабее кислота, тем меньше степень диссоциации по 2-й ступени.

Основные соли, получаемые при неполном замещении гидроксид-ионов на кислотные остатки, диссоциируют также по ступеням:

1 ступень (CuОH)2SO4 « 2 CuОH + + SO2-4,

2 ступень CuОH + « Cu2+ + OH-.

Основные соли слабых оснований диссоциируют в основном по 1-й ступени.

Комплексные соли, содержащие сложный комплексный ион, сохраняющий свою стабильность при растворении, диссоциируют на комплексный ион и ионы внешней сферы

K3[Fe(CN)6] « 3K+ + [Fe(CN)6]3-,

[Cu(NH3)4]SO4 « [Cu(NH3)4]2+ + SO2-4.

В центре комплексного иона находится атом - комплексообразователь. Эту роль обычно выполняют ионы металла. Вблизи комплексообразователей расположены (координированы) полярные молекулы или ионы, а иногда и те и другие вместе, их называют лигандами. Комплексообразователь вместе с лигандами составляет внутреннюю сферу комплекса. Ионы, далеко расположенные от комплексообразователя, менее прочно связанные с ним, находятся во внешней среде комплексного соединения. Внутреннюю сферу обычно заключают в квадратные скобки. Число, показывающее число лигандов во внутренней сфере, называется координационным. Химические связи между комплексными и простыми ионами в процессе электролитической диссоциации сравнительно легко разрываются. Связи, приводящие к образованию комплексных ионов, получили название донорно-акцепторных связей.

Ионы внешней сферы легко отщепляются от комплексного иона. Эта диссоциация называется первичной. Обратимый распад внутренней сферы происходит значительно труднее и носит название вторичной диссоциации

[Ag(NH3)2]Cl « [Ag(NH3)]+ + Cl- - первичная диссоциация,

[Ag(NH3)2]+ « Ag+ +2 NH3 - вторичная диссоциация.

вторичная диссоциация, как диссоциация слабого электролита, характеризуется константой нестойкости

Кнест. = [Ag+] × [NH3]2 / [ [Ag(NH3)2]+ ] = 6,8×10-8.

Константы нестойкости (Кнест.) различных электролитов является мерой устойчивости комплекса. Чем меньше Кнест. , тем устойчивее комплекс.

Так, среди однотипных соединений:

[Ag(HO2)2]- [Ag(NH3)2]+ [Ag(S2O3)2]+ [Ag(CN)2]+
Кнест = 1,3×10-3 Кнест =6,8×10-8 Кнест =1×10-13 Кнест =1×10-21

устойчивость комплекса возрастает при переходе от [Ag(HO2)2]- к [Ag(CN)2]+.

Значения константы нестойкости приводят в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями при сильном различии констант нестойкости реакция пойдет в сторону образования комплекса с меньшей константой нестойкости.

Комплексная соль с малоустойчивым комплексным ионом называется двойной солью. Двойные соли, в отличие от комплексных, диссоциируют на все ионы, входящие в их состав. Например:

KAl(SO4)2 « K+ + Al3+ + 2SO2-4,

NH4Fe(SO4)2 « NH4+ + Fe3+ + 2SO2-4 .

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.