Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Соотношения неопределенностей Гейзенберга



Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Другими словами, мы можем говорить о значениях координаты и импульса микрочастицы только с некоторой степенью приближения. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг. Он показал, что эти неопределенности (неточности) удовлетворяют следующим соотношениям:

 

DX×DPX³h; DY×DPY³h; DZ×DPZ³h; DW×Dt³h.

 

Эти неравенства называются соотношениями неопределенностей Гейзенберга.

Таким образом, если мы знаем положение X импульс Р микрочастицы (например, электрона в атоме) с погрешностями DX и DPX, то эта погрешность не может быть меньше, чем h. Этот предел мал, поскольку мала сама h – постоянная Планка, но он существует, и это фундаментальный закон природы. Важно заметить, что эта неопределенность не связана с несовершенством наших приборов. Речь о том, чтопринципиально нельзя определить одновременно координату и импульс частицы точнее, чем это допускает соотношение неопределенностей. Этого нельзя сделать точно, так же как нельзя превысить скорость света, достичь абсолютного нуля температур, поднять себя за волосы, вернуть вчерашний день.

Из соотношения неопределенностей видно, что с увеличением массы частицы ограничения, накладываемые им уменьшаются. Например, для пылинки m=10-13кг, координата которой получена с точностью до ее размеров, т.е. DX=10-6м, получаем DVX=1,0×10-15 м/с. Эта неопределенность практически не будет сказываться ни при каких скоростях, с которыми может двигаться частица. Для макроскопических тел соотношение неопределенностей не будет вносить никаких ограничений в возможность применить для них понятия координаты и скорости одновременно. Дело в том, что постоянная Планка в этих случаях может рассматриваться пренебрежимо малой. Это приводит к тому, что квантовые свойства изучаемых объектов оказываются несущественными, а представления классической физики – полностью справедливыми. Аналогично при скоростях, намного меньших скорости света, выводы теории относительности совпадают с выводами классической механики.

Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.

Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом:

Теории, справедливость которых была экспериментально установлена для определенной группы объектов, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.

 

 

Основные понятия и принципы КПКМ.

Как и все предшествующие картины Мира, КПКМ представляет собой процесс дальнейшего развития и углубления наших знаний о сущности физических явлений. Процесс становления и развития КПКМ продолжается и прошел уже ряд стадий, в частности:

1) утверждение корпускулярно-волновых представлений о материи;
2) изменение методологии познания и отношения к физической реальности;

Пояснение: Ранее считалось, что устройство мира можно познавать, не вмешиваясь в него, не влияя на протекающие в нем процессы, т.е. находясь как бы вне его, вне абсолютной физической реальности. Эйнштейн не включал в понятие «физическая реальность» акт наблюдения, а Бор считал его важным элементом физической реальности. Картина реальности в квантовой механике становится как бы двуплановой: с одной стороны в нее входят характеристики исследуемого объекта, а с другой – условия наблюдения. Таким образом, в КПКМ появляется принцип относительности к средствам наблюдения.

Все рассмотренные ранее картины мира отличались своей трактовкой таких фундаментальных понятий как пространство и время, движение, принцип причинности, взаимодействия. Рассмотрим, как они представлены в КПКМ.

Пространство и время. При рассмотрении МКМ подчеркивалось, что пространство и время в ней абсолютны и независимы друг от друга. Для характеристики объекта в пространстве вводились три пространственные координаты (X,Y,Z), а для обозначения временинезависимо от них вводилась одна временная координата t. В СТО и ЭМКМ они потеряли абсолютный и независимый характер. Появилось новое пространство-время как абсолютная характеристика четырехмерного Мира (пространственно-временного континуума Минковского). И новая величина – пространственно-временной интервал стал оставаться неизменным (инвариантным) при переходе от одной системы отсчета к другой.

Причинность. В МКМ при описании объектов используется два класса понятий: пространственно-временные, которые дают кинематическую картину движения и энергетически импульсные, которые дают динамическую (причинную) картину. В МКМ и ЭМКМ они независимы. В КПКМ, в соответствии соотношением неопределенностей они не могут применяться независимо друг от друга, они дополняют друг друга. Таким образом, пространство, время и причинность оказались относительными и зависимыми друг от друга.

Независимость пространства, времени и причинности в МКМ позволяет говорить о точной локализации объекта в пространстве, его траектории, об однозначной причинно-следственной связи (лапласовский детерминизм), об одновременном, точном измерении координат и скорости, энергии и времени.

В квантовой механике относительность пространства-времени и причинности приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории движения микрообъекта. И если в классической физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой частицы подчиняется не динамическим (детерминистским), а статистическим законам. Таким образом, причинность в современной КПКМ имеет вероятностный характер (вероятностная причинность).

Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.

1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 100, радиус действия порядка 10-15, время протекания t ~10-23с. Частицы – переносчики - p-мезоны.

2. Электромагнитное взаимодействие: константа порядка 10-2, радиус взаимодействия не ограничен, время взаимодействия t ~ 10-20с. Оно реализуется между всеми заряженными частицами. Частица-переносчик – фотон (g-квант).

3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10-13, t ~ 10-10с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10-18м. Частицы – переносчики - виртуальные W- и Z-бозоны.

4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.