Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Превращения белков в организме



 

Обмен белков – центральный процесс всего обмена веществ в организме. Он тесно связан с обменом соединений всех других классов, так как ферменты, катализирующие любые реакции обме­на, — это белки. Кроме того, постоянно совершаются химические превращения промежуточных продуктов обмена белков в соедине­ния других классов и обратные превращения. Поскольку белки основной строительный материал различных биологических струк­тур, обмен белков играет первостепенную роль в их разрушении и новообразовании. Обновление белков в организме человека проте­кает достаточно быстро: белки печени обновляются наполовину за 10 суток, плазмы крови — за 20—40 суток, мышечные — несколь­ко медленнее.

Разрушение тканевых белков приводит к образованию аминокислот и некоторых других веществ, которые используются в той же клетке или выделяются из нее в кровь.

Основным пластическим материалом, служащим для обновления тканевых белков, являются белки пищи. Однако они не могут включаться в состав клеточных структур без предварительного расщепления. Опыты по введению животным белковых растворов непосредственно в кровь показали, что чужие для данного организ­ма белки вызывают образование защитных антител,разрушающих эти белки. При этом нормальное протекание процессов обмена ве­ществ нарушается. Поступление в кровь большого количества чу­жого белка может вызвать тяжелое заболевание, а иногда и ги­бель организма. Это связано с высокой видовой специфичностью белков.Белки разных организмов (а иногда и разных органов од­ного и того же организма) резко отличаются друг от друга своим аминокислотным составом, структурой и функциями. Поэтому бел­ки пищи обязательно должны быть расщеплены в пищеваритель­ной системе до составных частей, не обладающих специфичностью: аминокислот или низкомолекулярных пептидов, которые способны всасываться в кровь и могут быть далее использованы при внут­риклеточном обмене. Разрушение пищевых белков происходит гид­ролитически.

В клетках различных органов, особенно печени, аминокислоты образуются из веществ небелковой природы — промежуточных продуктов обмена углеводов и липидов. Возможны также превра­щения одних аминокислот вдругие. Однако только часть амино­кислот (так называемые заменимые)может синтезироваться в организме человека. Другие аминокислоты (незаменимые)долж­ны поступать в организм с пищей. Белки пищи, содержащие пол­ный набор незаменимых аминокислот, называются полноценными.Это белки мяса, рыбы, яиц, творога и других продуктов животного происхождения. Белки, не содержащие незаменимых аминокислот, называются неполноценными.Это многие растительные белки. Человек может обеспечить себя всеми незаменимыми аминокисло­тами и с помощью растительной пищи, так как в разных расти­тельных белках отсутствуют разные аминокислоты. Но в этом случае общее количество белка, которое организм должен перера­ботать, сильно увеличивается. Незаменимыми аминокислотами яв­ляются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин.

Каким бы путем ни образовывались аминокислоты (в резуль­тате распада тканевых белков, в процессе пищеварения или ново­образования из веществ небелковой природы), все они поступают в общий метаболический фондаминокислот,из которого каждая клетка получает аминокислоты, необходимые для внутриклеточно­го обмена.

В клетках аминокислоты могут включаться в синтез новых бел­ков или разрушаться в процессах диссимиляции до конечных про­дуктов обмена. Включение аминокислот в пластические (синтетические) процессы или в энергетический обмен зависит от конкретных условий протекания реакций в клетках. При напря­женной мышечной деятельности преобладает распад тканевых белков и аминокислот, в ходе которого может освобождаться до 12% энергии, необходимой для работы мышц. В период отдыха после работы преобладающими становятся реакции биосинтеза белка, потребляющие много энергии. Особенно интенсивно синтез белков идет в печени, лимфатических узлах, костном мозгу, селе­зенке, слизистой оболочке кишечника.

Диссимиляция аминокислотпроисходит с помощью ряда реак­ций: дегидрогенирования, дезаминирования, переаминирования, декарбокси-лирования. Сочетаясь в разной последовательности, они приводят к образованию из аминокислот пировиноградной кисло­ты, ацетилкофермента А и ряда метаболитов цикла трикарбоновых кислот, где их распад завершается образованием углекислого газа и воды. Азот белков и аминокислот в конечном итоге оказы­вается в составе аммиака и мочевины.

Пищеварение белков

Белки, поступающие с пищей, подвергаются в желудочно-ки­шечном тракте распаду при участии протеолитических ферментов или пептидгидролаз, которые ускоряют гидролитическое расщеп­ление пептидных связей между аминокислотами. Различные пептидгидролазы обладают относительной специфичностью: они спо­собны катализировать расщепление связей только между опреде­ленными аминокислотами. Пептидгидролазы выделяются в неактив­ной форме (это предохраняет стенки пищеварительной системы и другие пищеварительные ферменты от самопереваривания). Акти­вируются они при поступлении пищи в соответствующий отдел пи­щеварительной системы или при виде, запахе пищи по механизму условного рефлекса.

Во рту белки пищи только механически измельчаются, но не подвергаются химическим изменениям, так как в слюне нет пептидгидролаз. Химическое изменение белков начинается в желудке при участии пепсина и соляной кислоты. Под действием соляной кислоты белки набухают, и фермент получает доступ во внутренние зоны их молекул. Пепсин ускоряет гидролиз внутренних (расположенных далеко от концов молекулы) пептидных связей. В результате из белковой молекулы образуются крупные осколки — высокомолекулярные пептиды. Если в желудок поступают сложные белки, пепсин и соляная кислота способны катализировать отделение их простетической группы. Высокомолекулярные пепти­ды в кишечнике подвергаются дальнейшим превращениям в слабощелочной среде под дейст­вием трипсина, химотрипсина и пептидаз. Трипсин ускоряет гид­ролиз пептидных связей, в обра­зовании которых принимают участие карбоксильные группы; химотрипсин расщепляет пептидные связи, образованные с участием карбок­сильных групп триптофана, тиро­зина или фенилаланина. В ре­зультате действия этих фермен­тов высокомолекулярные пепти­ды превращаются в низко-молекулярные и некоторое оличество свободных аминокислот. Низкомолекулярные пептиды в тонком кишечнике подвергаются действию карбоксипептидаз А и В, отщепляющих концевые аминокислоты со стороны свободной кар­боксильной группы, и аминопептидазы, делающей то же самое со стороны свободной аминной группы. В результате образуются дипептиды, которые гидролизуются до свободных аминокислот под действием дипептидаз. Аминокислоты и некоторое количество низкомолекулярных пептидов всасываются кишечными ворсинка­ми. Этот процесс требует затрат энергии. Некоторое количество аминокислот уже в клетках кишечной стенки включа­ется в синтез специфических белков, большая же часть продуктов пищеварения поступает в кровь (95%) и в лимфу. Кровь перено­сит их в печень, где идет интенсивный синтез белков. Не исполь­зованные в печени аминокислоты и пептиды поступают в большой круг кровообращения.

Часть аминокислот, образовавшихся в процессе пищеварения, и непереваренные белки в нижних отделах кишечника подвергаются гниению под действием кишечных бактерий. Из некоторых амино­кислот образуются токсичные продукты: амины, фенолы, меркап­таны. Они частично выводятся из организма с калом и кишечными газами, частично всасываются в кровь, переносятся ею в печень, где происходит их обезвреживание. Этот процесс требует значи­тельных затрат энергии АТФ.

Сложный белок в пищеварительной системе распадается на простой белок и простетическую группу. Простые белки подверга­ются обычному гидролизу до аминокислот. Превращения простетических групп происходят в соответствии с их химической природой. Гем хромопротеидов в кишечнике окисляется в гематин, который почти не всасывается в кровь, а выделяется с калом, так что не может быть использован для синтеза хромопротеидов в тканях. Нуклеиновые кислоты в кишечнике гидролизуются при участии эндонуклеаз, экзонуклеаз и нуклеотидаз. Под действием эндонуклеаз из молекул нуклеиновых кислот образуются крупные оскол­ки — олигонуклеотиды. Экзонуклеазы от концов молекул нуклеи­новых кислот и олигонуклеотидов отщепляют мономеры — отдель­ные мононуклеотиды, которые под действием нуклеотидаз могут распадаться на фосфорную кислоту и нуклеозид. Мононуклеотиды и нуклеозиды всасываются в кровь и переносятся к тканям, где мононуклеотиды используются для синтеза специфических нуклеи­новых кислот, а нуклеозиды подвергаются дальнейшему распаду.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.