Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Оптоэлектронные датчики



При измерении низких давлений или когда для повышения динамического диапазо­на применяются толстые мембраны, для получения заданных значений разрешения и точности величина перемещения диафрагмы может оказаться недостаточной. В до­полнение к этому рабочие характеристики большинства пьезорезистивных и неко­торых емкостных датчиков довольно сильно зависят от температуры, что требует ис­пользования дополнительных цепей температурной компенсации. Оптические ме­тоды измерений обладают рядом преимуществ над остальными способами детекти­рования давления: простотой, низкой температурной чувствительностью, высокой разрешающей способностью и высокой точностью. Особенно перспективными яв­ляются оптоэлектронные датчики, реализованные на основе явления интерферен­ции света [11]. Такие преобразователи используют принцип измерения малых пере­мещений Фабри-Перо, детально рассмотренный в разделе 7.5 главы 7. На рис. 10.13 показана упрощенная схема одного из таких датчиков.


 
фотодиоды
кристалл детектора
СИД
встроенные фильтрь
Фабри-Перо
интерферометр Фабри-Перо
стекло
диафрагма
Рис. 10.13. Схема оптоэлектронного датчика давления, использующего принцип интерфе­ренции света [12]

В состав датчика входят следую­щие компоненты: пассивный кристалл оптического преобразователя давления с диафрагмой, вытравленной в кремни­евой подложке; светоизлучающий диод (СИД) и кристалл детектора [12]. Де­тектор состоит из трех р-n фотодиодов, к двум из которых пристроены опти­ческие фильтры Фабри-Перо, имею­щие небольшую разницу по толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые сло­ем из Si02, на поверхность которых на­несен тонкий слой А1. Оптический пре­образователь похож на емкостной дат­чик давления, описанный в разделе 10.2, за исключением того, что в нем конденсатор заменен на интерферометр Фабри-Перо[13], используемый для измерения отклонения диафрагмы. Диафрагма, сфор­мированная методом травления в подложке из монокристаллического кремния, по­крыта тонким слоем металла. На нижнюю сторону стеклянной пластины также на­несено металлическое покрытие. Между стеклянной пластиной и кремниевой под­ложкой существует зазор шириной w, получаемый при помощи двух прокладок. Два слоя металла формируют интерферометр Фабри-Перо с переменным воздушным за­зором w, в состав которого входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационар­ное полупрозрачное зеркало на стеклянной пластине. Поскольку величина w связа­на с внешним давлением линейной зависимостью, длина волны отраженного излу­чения меняется при изменении давления. Принцип действия датчика основан на из­мерении модуляции длины волны, получаемой от сложения падающих и отражен­ных излучений. Частота периодического интерференционного сигнала определяет­ся шириной рабочей полости интерферометра w, а его период равен l/2w.

Детектор работает как демодулятор, электрический выходной сигнал которого пропорционален приложенному давлению. Он является оптическим компарато­ром, сравнивающим высоту рабочей камеры датчика давления и толщину вирту­альной камеры, сформированной за счет разности высот двух фильтров Фабри-Перо. Когда размеры этих камер равны, ток фотодетектора будет максимальным. При изменении давления происходит косинусная модуляция фототока с периодом, со­ответствующим половине средней длины волны источника излучения. Фотодиод без фильтра используется в качестве эталонного диода, отслеживающего полную интенсивность света, поступающего на детектор. Его выходное напряжение при­меняется при последующей обработке сигналов для получения нормированных ре­зультатов измерений. Поскольку рассматриваемый датчик давления является не­линейным, он обычно встраивается в микропроцессорную систему, на которую, в частности, возложены функции его линеаризации. Аналогичные оптические


датчики давления реализуются на основе оптоволоконных световодов. Такие дат­чики незаменимы при проведении измерений в труднодоступных зонах, где исполь­зование ВЧ интерферометров невозможно [14].

Вакуумные датчики

При производстве подложек для микроэлектронных устройств, оптических компо­нентов, а также в ходе проведения химических и других технологических процес­сов бывает необходимо измерять очень низкие давления. Без таких измерений не обходятся и при проведении некоторых научных экспериментов, например, в кос­мических исследованиях. Термин вакуум означает давление ниже атмосферного, но, как правило, он употребляется в случаях практического полного отсутствия дав­ления газов. Абсолютный вакуум получить невозможно, даже в космическом про­странстве нет ни одной зоны, где бы полностью отсутствовала материя.

Вакуум можно измерять и традиционными датчиками, при этом будут регис­трироваться отрицательные значения давления по отношению к атмосферному, но это очень неэффективный подход. Обычные датчики давления не могут опре­делять очень низкие концентрации газов из-за низкого отношения сигнал/шум. В отличие от традиционных датчиков давления измерители вакуума работают на совершенно других принципах, которые основываются на некоторых физичес­ких свойствах молекул газов и заключаются в определении числа молекул в за­данном объеме. К таким физическим свойствам относится теплопроводность, вязкость, ионизация и другие. В этом разделе будут даны краткие описания са­мых популярных датчиков давления, используемых для измерения вакуума.

Вакууметры Пирани

Вакууметры Пирани — это датчики, измеряющие давление по теплопроводности газа. Этот тип измерителей вакуума был разработан первым. В конструкцию само­го простого датчика Пирани входит нагреваемая пластина. Измерение вакуума зак­лючается в определении количества тепла, теряемого этой пластиной, которое за­висит от давления газа. В основу принципа действия вакууметра Пирани положено открытие Мариана Ван Смолючовски [15], который установил, что при нагрева­нии объекта его тепловые потери формируются из следующих составляющих:


 

(10.16)


где Gsтеплоотдача в твердые окружающие предметы, Gr — радиационная теп­лопередача, а — площадь нагреваемой пластины, к — коэффициент, характери­зующий свойства газа, а РT — максимальное давление, которое можно измерить данным датчиком. Первые два члена представляют собой паразитную теплопро­водность G0, а третий член соответствует передаче тепла газу Gg. На рис. 10.14А показано влияние различных факторов на тепловые потери нагреваемой плас­тины. При отсутствии паразитных теплопотерь теплопроводность газа линейно снижается вплоть до абсолютного вакуума. Поэтому при разработке таких уст­ройств всегда стремятся минимизировать факторы, составляющие G0. Для этого


 

либо используют конструкцию с подвешенной нагреваемой пластиной для уменьшения теп­лового контакта с корпусом датчика, либо применяют дифференциальный метод сниже­ния влияния G0.

давление, Торр
(А)
давление, Торр
(Б)
Рис. 10.14. А — тепловые потери нагреваемой пластины, Б — пере­даточная функция вакууметра Пи­рани
 
Рис. 10.15. Вакууметр Пирани с термисторами с ОТК, работающими в режиме саморазогрева

Существует несколько конструкций датчи­ков Пирани, используемых в вакуумной техни­ке. В состав некоторых из них входят две плас­тины, находящиеся при разных температурах. В таких датчиках давление газа определяется по количеству энергии, затраченной на нагрев пластин. Другие датчики используют только одну пластину, при этом теплопроводность газа измеряется по величине теплопотерь в окружа­ющие стенки. Для измерения температуры в со­став датчиков обычно входят либо термопары, либо платиновые терморезисторы. На рис. 10.15 показан дифференциальный вакууметр Пирани. Камера датчика разделена на две иден­тичные секции. В одной из секций газ находит­ся при эталонном давлении (например, при 1 атм =760 торр), а вторая расположена в ваку­умной камере, давление в которой необходи­мо измерить. В каждой камере есть нагревае­мая пластина, которая для уменьшения кондук-тивной теплопередачи через окружающие твер­дые предметы подвешена на очень тонких со­единительных элементах. Желательно, чтобы обе камеры имели одинаковые форму, конструкцию и размеры, для того чтобы кондуктивные и радиационные потери тепла в них были идентичными. Чем сим­метричнее конструкция камер, тем лучше компенсируются паразитные теплопо-тери G0. Пластины нагрева­ются при помощи электри­ческих нагревателей. В рас­сматриваемом датчике на­гревательным элементом является термистор с отри­цательным температурным коэффициентом (ОТК) (см. главу 16). Сопротивления термисторов равны и имеют сравнительно низкий но­минал, поэтому в них воз­можно протекание процес­са саморазогрева Джоуля (см. рис. 16.11 главы 16).


 

(А)

(Б)

(В) Рис. 10.16.Ионизационный вакуумный датчик (А), изме­ритель Баярда-Алперта (Б), датчик газового сопротивле­ния (В)

Эталонный термистор Sr включен в схему само­балансирующегося моста, в состав которого входят также резисторы: Rr,R1,R2 и ОУ. Мостовая схема автоматически выводит температуру термистора Sr на постоянный уровень Г, определяемый сопро­тивлениями резисторов моста, на который окружа­ющая температура не оказывает никакого влияния. Отметим, что уравновешивание мостовой схемы осуществляется при помощи цепей как положи­тельной, так и отрицательной ОС, включенных от­носительно ее плечей. Конденсатор С не допускает возникновения в схеме колебательных режимов. То же самое напряжение Е, которое используется для нагрева эталонной пластины, подается на термис­тор Sv, расположенный на чувствительной пласти­не, через резистор Rv, равный резистору Rr. Выход­ное напряжение снимается относительно чувстви­тельного термистора и моста. Передаточная функ­ция такого датчика показана на рис. 10.14Б. Вакуу-метрам иногда приходится работать с газами, ко­торые могут загрязнить их чувствительную пласти­ну, поэтому в их состав также должны входить со­ответствующие фильтры.

Ионизационные датчики

Такие датчики напоминают вакуумные лампы, ис­пользуемые в качестве усилителей в старых радио­приемниках. Ток ионов между пластиной и нитью накаливания почти линейно зависит от плотнос­ти молекул (давления) [16,17]. Лампы вакуумных датчиков имеют обратное включение: на сетку по­дается высокое положительное напряжение, а пла­стина подсоединяется к низкому отрицательному напряжению. Выходным сигналом ионизационно­го датчика является ток ионов ip, снимаемый с пла­стины, пропорциональный давлению и току элек­тронов ig на сетке. В настоящее время используется усовершенствованная модель этого датчика, назы­ваемая измерителем Баярда-Алперта [18]. Он обла­дает большей чувствительностью и стабильностью и может измерять более низкие давления. Его прин­цип действия аналогичен предыдущему датчику, но измеритель Баярда-Алперта имеет другую конст­рукцию, в нем пластина заменена на провод, окру­женный сеткой, а нить накаливания катода выне­сена наружу (рис. 10.16Б).


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.