Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ.



МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ.

 

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ПОНЯТИЯ

 

Колебаниями называется вид движения физических тел или такие процессы, для которых характерна та или иная степень повторяемости во времени. Например, принципом повторяемости обладают: движения маятника и гитарной струны, голосовых связок и барабанной перепонки уха, колебания температуры воздуха и напряжения в электросети, изменение освещенности на улице в связи со сменой дня и ночи и т.д. Как видно из приведенных примеров, колебания имеют различное происхождение, иначе говоря, разную физическую природу: колебания механические, тепловые, электрические, электромагнитные, оптические и др.

Если повторяемость состояний колеблющейся системы имеет произвольный характер, то такие колебания называются апериодическими или непериодическими. Колебания, для которых последовательность состояний системы повторяется через равные промежутки времени, называются периодическими. В дальнейшем мы будем рассматривать в основном периодические колебания.

В зависимости от характера воздействия, оказываемого на колебательную систему извне, различают: свободные (или собственные) колебания и колебания вынужденные. По этому признаку различают еще автоколебания и параметрические колебания.

Свободными называются колебания, которые совершаются за счет внутренних сил системы, предоставленной самой себе после того, как ей был сообщён внешний первоначальный толчок, породивший эти колебания. Например, шарик на нити.

Вынужденными называются колебания, которые совершаются под постоянным воздействием внешней переменной силы. Например, колебания моста, когда по нему идут пешеходы.

Если с течением времени запас энергии колебательной системы не меняется, то такое колебание называется незатухающим. Если же эта энергия уменьшается, то – затухающим.

Независимо от природы, все виды колебательного движения имеют общие закономерности, т.е. протекают по одним и тем же законам и характеризуются одними и теми же параметрами: периодом Т, частотой ν, амплитудой А и фазой φ.

Закон колебательного движения – это уравнение, которое показывает, как с течением времени изменяются параметры, описывающие состояния колеблющегося тела. Простейшими являются гармонические колебания, для которых изменение величин, описывающих состояние системы, происходит по закону синуса или косинуса. Этот вид колебаний особенно важен, т.к. в природе и в практической сфере колебания очень часто имеют характер близкий к гармоническому или могут быть представлены как сумма нескольких простых гармонических колебаний.

 

 

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Получим закон гармонических колебаний на примере механического движения механических колебаний. Это вид колебаний, при котором тело поочерёдно и многократно совершает отклонения от своего положения равновесия в одну и другую сторону.

Рассмотрим колебания пружинного маятника вдоль горизонтальной оси при отсутствии силы сопротивления. Пружинный маятник представляет собой массивный шарик массой m, прикрепленный к пружине с ничтожно малой массой и жесткостью k. Другой конец пружины закреплен неподвижно. Если вывести шарик из равновесия и отпустить, то под воздействием силы упругости деформированной пружины система пружина–шарик придет в колебательное движение. Положение шарика на оси будем определять смещением s, т.е. расстоянием от положения равновесия до шарика (рис.1). Наша цель решить основную задачу механики – найти ответ на вопрос: где будет находиться тело в произвольный момент времени t, т.е. найти вид функции s = f(t)?

Примем за начало отсчета точку 0, в которой находится центр шарика в равновесном состоянии системы, т.е. при отсутствии деформации в пружине. Пусть в момент времени t шарик находится на расстоянии s от положения равновесия. Характер движения в данный момент времени определяется равнодействующей приложенных к шарику сил: . Т.к. трение по условию отсутствует, а сила тяжести перпендикулярна стержню, то характер движения будет определяться только силой упругости деформированной пружины:

 

. (1)

В соответствии со 2-ым законом Ньютона эта сила сообщает шарику ускорение , тогда в скалярном виде (1) можно записать:

, (2)

но т.к. a = d2s /dt2, то

. (3)

Разделим правую и левую часть (3) на m и обозначим k/m = . Сгруппировав все члены в левой части равенства, получим дифференциальное уравнение гармонических колебаний.

или . (4)

 

Это дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение: к2 + = 0, корни которого к1,2 = ±iω0 – мнимые числа. Тогда общим решением (4) будет:

 

s= С1cosω0t + C2sinω0t. (5)

 

Для любых С1 и С2 всегда можно подобрать другие произвольные постоянные А и φ0 такие, что С1 = Аsin φ0,1 а С2 = Аcosφ0,1, Тогда общее решение (5) примет вид:

 

s= А(sin φ0,1·cosω0t + cosφ0,1·sinω0t) = Аsin(ω0t + φ0,1). (6)

 

Если выражения для С1 и C2 поменять местами (С1 = Аcosφ0,2 а С2 = Аsin φ0,2), то общее решение будет иметь вид:

 

s= А(cos φ0,2·cosω0t + sinφ0,2·sinω0t) = Аcos(ω0t + φ0,2). (7)

 

Данные функции (6) и (7) и есть искомые кинематические уравнения гармонического колебания. Аргумент этой функции (w0t + φ0) называется фазой колебания; j0 – постоянная составляющая фазы называется начальной фазой; – собственная циклическая (круговая) частота колебаний данного пружинного маятника ( , , тогда ); А – амплитуда колебаний, в данном случае максимальное значение смещения s. В общем случае, амплитуда А – это наибольшее значение величины, изменение которой с течением времени выбрали для описания изучаемых колебаний. Графики гармонического колебания представляют собой синусоиды (рис.2):

 

Получим уравнения, описывающие изменения скорости и ускорения тела, совершающего гармонические колебания. Пусть s = Аcos(ω0t + φ0), тогда:

 

, (8)

. (9)

 

Как видно, скорость и ускорение тоже изменяются по гармоническим законам, но скорость опережает по фазе смещение на p/2, а ускорение на p (рис.3), т.е. ускорение находится в противофазе со смещением. В целом, тела, на которые действуют равнодейству-ющие вида F = -ks (такие силы называются квазиупругими), будут совершать гармонические колебания.

Рассмотрим процесс колебательного движения с энергетической точки зрения. Смещая тело из положения равновесия, мы деформируем пружину, сообщая тем самым системе запас потенциальной энергии. Отпустив тело, мы даем ему возможность двигаться к положению равновесия. При этом потенциальная энергия системы превращается в кинетическую. В момент прохождения положения равновесия потенциальная энергия полностью превращается в кинетическую. Продолжая движение по инерции, тело опять деформирует пружину, т.е. кинетическая энергия начинает превращаться в потенциальную. В момент, когда кинетическая энергия полностью превра тится в потенциальную, смещение достигнет амплитудного значения, тело остановится и начнет двигаться обратно. Опять потенциальная энергия будет превращаться в кинетическую и т.д. (рис.4). Т.о., с точки зрения энергетической, механическое колебание – это процесс многократных, последовательных превращений потенциальной энергии в кинетическую и обратно.

, (10)

, (11)

, (12)

 

т.е. полная энергия системы величина постоянная.

 

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.