Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Метод зон Френеля. Прямолинейное распространение света



Пусть в некоторый произвольный момент времени фронт сферической волны, распространяется из источника , занимает положение S (рис. 33.2).

 

 


В соответствии с принципом Гюйгенса-Френеля интенсивность света в точке Р определяется результатом интерференции всех вторичных волн, испущенных точками поверхности S. Для расчета результата интерференции Френель предложил мысленно разбить поверхность S на кольцевые зоны, которые и называются зонами Френеля. Они построены таким образом, чтобы расстояние от краев соседних зон до точки Р отличались на λ/2. В этом случае колебания, приходящие в т. Р от соответствующих частей соседних зон, будут иметь разность хода λ/2 и находиться в противофазе.

Прономеруем зоны Френеля, начиная от центральной, индексом m (m = 1, 2, …) и обозначим амплитуду колебания, возбуждаемого в т. Р m-ой зоной, . Можно показать, что площади зон Френеля примерно одинаковы

[ ]. Расстояние от зоны до точки Р медленно растет с номером зоны m. Угол φ между нормалью к элементам зоны и направлением на т. Р также растет с m. Все это приводит к тому, что амплитуда колебания, возбуждаемого m-ой зоной в т. Р, монотонно убывает т. е. . Фазы колебаний, возбуждаемых соседними зонами, отличаются на π. Поэтому амплитуда А результирующего колебания в т. Р может быть представлена в виде:

(33-1)

Запишем выражение (33-1) в виде:

(33-2)

Вследствие монотонного убывания можно приближенно считать, что

Тогда выражения в скобках (33-2) будут равны нулю и, формула упрощается (число зон достаточно велико, а амплитуда последней зоны ничтожно мала по сравнению с амплитудой первой зоны).

 
 

 

 


Таким образом, амплитуда, создаваемая в некоторой точке Р всей сферической волновой поверхностью, равна половине амплитуды, создаваемой лишь одной центральной зоной. Так как величина зоны 1 мала (мала длина волны), то с точки зрения наблюдателя в точке Р, свет распространяется от источника (рис. 33.2) и т. Р в виде узкого прямолинейного пучка.

Колебания от четных и нечетных зон Френеля находятся в противофазе и, следовательно, взаимно ослабляют друг друга.

Если поставить на пути световой волны пластину, которая перекрывала бы четные или нечетные зоны, то интенсивность волн в т. Р резко возрастет (зонная пластинка).

 

Дифракция Френеля на круглом отверстии и диске.

Пусть сферическая волна исходит из источника , а круглое отверстие оставляет открытым m зон Френеля (см. рис. 33.3).

 
 

 


Если m – мало, то почти не отличается от . Следовательно, при нечетных m амплитуда А в т. Р приблизительно равна , а при четных m – практически равна нулю. При нечетном числе открытых зон амплитуда в т. Р имеет некоторые промежуточные значения. Следует отметить, что амплитуда колебаний в т. Р при небольшом нечетном числе открытых зон в два, а интенсивность света в четыре раза выше, чем в отсутствие преграды (!). Полученный результат, с точки зрения геометрической оптики выглядит совершенно неправдоподобно.

Дифракционная картина представляет систему чередующихся темных и светлых колец.




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.