Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Измерение частоты переменного тока



Частоту переменного тока измеряют частотомерами. В электротехнике ХХ века обычно применяли резонансные электромагнитные или ферродинамические приборы, которые в настоящее время устарели, но их еще можно встретить на действующих электротехнических установках.

Электромагнитный резонансный частотомер имеет электромагнит 2 (рис. 1, а), в поле которого расположены стальной якорь 1 и соединенный с ним стальной брусок 5. Этот брусок укреплен на упругих пружинах 4 и на нем размещен ряд гибких стальных пластинок 3, площадь поперечного сечения которых подобрана таким образом, что каждая следующая пластинка имеет частоту собственных колебаний на 0,5 Гц больше, чем предыдущая. Свободные концы пластинок введены в прорезь, имеющуюся на шкале прибора. Катушка электромагнита присоединена к сети переменного тока так же, как и катушка вольтметра.

Рис. 1. Устройство электромагнитного резонансного частотомера

 

При прохождении по катушке переменного тока электромагнит создает магнитное поле, пульсирующее с частотой изменения тока. Находящийся в этом поле якорь 1 также начнет совершать колебательные движения и вызывать колебания связанных с ним пластинок 3.

Колебания пластинок обычно бывают настолько незначительными, что они не могут быть замечены глазом. Однако если
частота собственных колебаний какой-либо пластинки совпадает с частотой изменения переменного тока, т. е. с частотой колебаний якоря, то наступит явление механического резонанса, при котором эта пластинка начнет колебаться с большой амплитудой. Белый квадратик на ее конце превращается при этом в белую полоску (рис. 1,б), против которой по шкале можно отсчитывать измеряемую частоту. Значительно слабее колеблются две пластинки, колебания же всех остальных пластинок обычно совершенно незаметны для глаза.

 

Рис. 2. Принципиальная схема ферродинамического частотомера

Ферродинамический частотомер (рис. 2) представляет собой логометр ферродинамической системы. Катушки логометра соединяются в две параллельные цепи, которые подключаются к двум точкам а и б, между которыми действует напряжение переменного тока U (так же, как и вольтметры). Последовательно с неподвижной 3 и одной из подвижных 1 катушек включены катушка индуктивности L и конденсатор С, а последовательно с другой подвижной катушкой 2 — резистор с сопротивлением R (могут быть и другие комбинации R, L и С). Поэтому ток I1 в первой параллельной ветви зависит от частоты f, а ток I2 во второй цепи не зависит отf.

В результате при изменении частоты f будут изменяться ток I1 и положение подвижной части логометра до тех пор, пока не наступит равновесие моментов М1 и М2, создаваемых его катушками. Показания такого прибора будут зависеть от частоты f.

Непосредственное измерение частоты производят частотомерами, в основу которых положены различные методы измерения в зависимости от диапазона измеряемых частот и требуемой точности измерения. Наиболее распространенными методами измерения частоты являются:

Метод перезаряда конденсатора за каждый период измеряемой частоты. Среднее значение тока перезаряда пропорционально частоте и измеряется магнитоэлектрическим амперметром, шкала которого проградуирована в единицах частоты. Выпускают конденсаторные частотомеры с пределом измерения 10 Гц - 1 МГц и погрешностью измерения +2%.

Резонансный метод, основанный на явлении электрического резонанса в контуре с подстраиваемыми элементами в резонанс с измеряемой частотой. Измеряемая частота определяется по шкале механизма подстройки. Метод применяется на частотах более 50 кГц. Погрешность измерения можно уменьшить до сотых долей процента.

Метод сравнения измеряемой частоты с эталонной. Электрические колебания неизвестной и образцовой частот смешиваются таким образом, чтобы возникли биения некоторой частоты. При частоте биений, равной нулю, измеряемая частота равна образцовой. Смешение частот осуществляют гетеродинным способом (способ нулевых биений) или осциллографическим.

При последнем способе применяют осциллограф с отключенным генератором внутренней развертки. Напряжение образцовой частоты подают на вход усилителя горизонтальной развертки, а напряжение неизвестной частоты - на вход усилителя вертикального отклонения.

Изменяя образцовую частоту, получают неподвижную или медленно меняющуюся фигуру Лиссажу. Форма фигуры зависит от соотношения частот, амплитуд и фазового сдвига между напряжениями, подаваемыми на отклоняющие пластины осциллографа.

Если мысленно пересечь фигуру по вертикали и горизонтали, то отношение числа пересечений по вертикали m к числу пересечений по горизонтали n равно при неподвижной фигуре отношению измеряемой fх и образцовой fобр частот.

При равенстве частот фигура представляет собой наклонную прямую, эллипс или окружность.

Частота вращения фигуры будет точно соответствовать разности df между частотами fx' и fx, где fx' = fобр (m / n) и, следовательно, fx = fобр (m / n) + df.Точность способа определяется в основном погрешностью задания образцовой частоты и определения величины df.

Другой способ измерения частоты методом сравнения - с использованием осциллографа, имеющего калиброванное значение длительности развертки либо встроенный генератор калиброванных меток.

Зная длительность развертки осциллографа, и подсчитав, сколько периодов измеряемой частоты укладывается на выбранной длине центрального участка экрана осциллографа, имеющего наиболее линейную развертку, можно легко определить частоту. Если в осциллографе имеются калибрационные метки, то, зная временной интервал между метками и подсчитав их число на один или несколько периодов измеряемой частоты, определяют длительность периода.

Метод дискретного счета лежит в основе работы цифровых частотомеров. Он основан на счете импульсов измеряемой частоты за известный промежуток времени. Обеспечивает высокую точность измерения в любом диапазоне частот.
Это наиболее распространенный современный метод измерения. Низкие частоты, такие как частота промышленной электросети может измеряться путем подсчета импульсов, поступающих от измерительного генератора высокой частоты F, за один или n периодов измеряемого тока или напряжения промышленной частоты f и вычисления значения измеряемой частоты по формуле: f = nF/N, где N - количество импульсов от измерительного генератора, полученное за n периодов промышленной частоты.
Другим способом является подсчет периодов сигнала измеряемой частоты за фиксированное время, например, за 1 секунду.

 

 

Классификация

· По методу измерения - приборы непосредственной оценки (напр. аналоговые) и приборы сравнения (напр. резонансные, гетеродинные, электронно-счетные).

· По физическому смыслу измеряемой величины — для измерения частоты синусоидальных колебаний (аналоговые), измерения частот гармонических составляющих (гетеродинные, резонансные, вибрационные) и измерения частоты дискретных событий (электронно-счетные, конденсаторные).

· По исполнению (конструкции) — щитовые, переносные и стационарные.

· По области применения частотомеры включаются в два больших класса средств измерений — электроизмерительные приборы и радиоизмерительные приборы. Следует заметить, что граница между этими группами приборов весьма прозрачна.

· В группу электроизмерительных приборов входят аналоговые стрелочные частотомеры различных систем, вибрационные, а также отчасти конденсаторные и электронно-счетные частотомеры.

· В группу радиоизмерительных приборов входят резонансные, гетеродинные, конденсаторные и электронно-счетные частотомеры.

[править]Электронно-счетные частотомеры

· Принцип действия электронно-счетных частотомеров (ЭСЧ) основан на подсчете количества импульсов, сформированных входными цепями из периодического сигнала произвольной формы, за определенный интервал времени. Интервал времени измерения также задается методом подсчета импульсов, взятых с внутреннего кварцевого генератора ЭСЧ или из внешнего источника (например стандарта частоты). Таким образом ЭСЧ является прибором сравнения, точность измерения которого зависит от точности эталонной частоты.

· ЭСЧ является наиболее распространенным видом частотомеров благодаря своей универсальности, широкому диапазону частот (от долей герца до десятков мегагерц) и высокой точности. Для повышения диапазона до сотен мегагерц — десятков гигагерц используются дополнительные блоки — делители частоты и переносчики частоты.

· Большинство ЭСЧ кроме частоты позволяют измерять период следования импульсов, интервалы времени между импульсами, отношения двух частот, а также могут использоваться в качестве счетчиков количества импульсов.

· Некоторые ЭСЧ (например Ч3-64) сочетают в себе электронно-счетный и гетеродинный методы измерения. Это не только повышает диапазон измерения, но и позволяет определять несущую частоту импульсно-модулированных сигналов, что простым методом счета недоступно.

· НАЗНАЧЕНИЕ: обслуживание, регулировка и диагностика радиоэлектронного оборудования различного назначения, контроль работы радиосистем и технологических процессов

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.