Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Рецепторы для высокомолекулярных белков



Гликопротеиновый комплекс GPIb-V-IX тром­боцитов участвует в опосредованной фактором Виллебранда адгезии тромбоцитов к субэндотели-альным структурам и активации тромбоцитов.

Полипептидные цепи GPIba, GPIb(3, GPV, GPIX полностью расшифрованы по аминокис­лотной последовательности, известны их кодиру­ющие гены. Характерной особенностью комплек­са является включение в пептидные цепи 24 ами­нокислотных остатков с лейцином, которые на­ходятся в строго определенных местах. Эти бел­ки получили название богатых лейцином глико-протеинов (LRG - leucine rich glycoproteins).

Связывание фактора Виллебранда с GPIb-V-IX интактных тромбоцитов незначительно. Контакт молекулы фактора Виллебранда с субэн-дотелиальным слоем, особенно при воздействии высокой скорости кровотока, приводит к конфор-мационным изменениям в молекуле, что значи­тельно повышает сродство фактора Виллебран­да к GPIb-V-IX.

Нефизиологическими стимуляторами процес­са взаимодействия фактора Виллебранда и GPIb-V-IX являются антибиотик ристомицин и проте­ин змеиного яда - ботроцетин. Ристомицин свя-


зывается с богатым пролином участком молеку­лы фактора Виллебранда и с одним или более доменами GPIb на тромбоцитах, а ботроцетин -только с фактором Виллебранда. Эти воздействия приводят к аналогичным физиологическим кон-формационным изменениям молекулы фактора Виллебранда и GPIb-V-IX и резко увеличивают сродство между фактором Виллебранда и тром­боцитарной мембраной.

Тромбоцитарный GPIb-V-IX также является высокоаффинным местом связывания тромбина. Взаимодействие GPIb-V-IX с фактором Вилле­бранда и тромбином приводит к активации тром­боцитов.

При врожденной недостаточности рецептор-ного комплекса не происходит связывания с фак­тором Виллебранда (vWF), что характерно для болезни Бернара-Сулье.

Интегрины

Кроме богатых лейцином гликопротеинов, на мембране тромбоцитов находится большое коли­чество адгезивных рецепторов, относящихся к се­мейству иншегринов. Интегрины - трансмембран­ные гликопротеины, характеризующиеся общно-

 


Тромбоциты


стью протеиновых цепей, антигенных свойств и функции. Они принимают участие во взаимодей­ствии клетки с клеткой и клетки с субэндотелиаль-ным матриксом. Благодаря способности образо­вывать связи со многими белками интегрины уча­ствуют в процессах распознавания, адгезии, миг­рации клеток на матриксе, репаративных, иммун­ных и других реакциях. К семейству интегринов относятся рецепторы к фибриногену, витронекти-ну, фибронектину, коллагену и другим белкам. Ин­тегрины способны распознавать характерную ами­нокислотную последовательность RGD (трипеп-тид Arg-Gly-Asp), имеющуюся в лигандах. Эта пос­ледовательность присутствует во всех адгезивных белках крови, белках α-гранул тромбоцитов, фиб­риногене, факторе Виллебранда, фибронектине, витронектине, ламинине. Для соединения интегри­нов с лигандами типична зависимость от двухва­лентных катионов Са2+ и Mg2+.

Комплекс GPIIb-IIIa является интегриновым рецептором тромбоцитов, который взаимодей­ствует в первую очередь с фибриногеном (фиб-риногеновый рецептор). Это взаимодействие обеспечивает основной путь агрегации тромбоци­тов друг с другом через «фибриновые мостики». При врожденном дефиците этого рецептора -тромбостении Гланцмана- резко нарушена или отсутствует агрегация тромбоцитов с большин­ством индукторов агрегации, в том числе колла­геном, тромбином, АДФ. Агрегация тромбоци­тов с этими индукторами также отсутствует в плазме пациентов с афибриногенемией,если фиб­риноген отсутствует также и в пулах хранения самих тромбоцитов.

Наличие в комплексе GPIIb-IIIa мест распоз­навания RGD объясняет способность этого ин-тегрина соединяться с фактором Виллебранда, фибронектином, витронектином. Показано, что связь GPIIb-IIIa с фактором Виллебранда важна для эффективной агрегации тромбоцитов в усло­виях воздействия высоких скоростей кровотока. Ключевой особенностью комплекса GPIIb-IIIa является способность исполнять роль рецептора только на поверхности активированных тромбо­цитов. Аффинность этого комплекса на поверх­ности неактивированных клеток очень низкая, а его антигенная характеристика отличается от та­ковой на активных тромбоцитах. Активация тромбоцитов приводит к значительному повыше­нию аффинности и изменению антигенной харак­теристики GPIIb-IIIa.

Активированные тромбоциты могут связы­вать на своей поверхности более 40 000 молекул фибриногена посредством GPIIb-IIIa. Это взаимо-


Рис. 20. Тромбиновый рецептортромбоцитарной мембраны, Схожее строение имеют рецепторы к АДФ, адреналину, серотонину, эйкозаноидам и другим низкомолекулярным соединениям. За счет нескольких петель рецептор имеет мно­гофункциональный характер. Внутриклеточный С-конец взаимодействует с цАМФ-зависимой протеинкиназой, гидрофиль­ные петли рецептора активируют опосредуемые G-белками внутриклеточные функциональные перестройки. Со сторо­ны N-конца тромбин вызывает частичный протеолиз и тем самым активирует рецептор

 

 

Тромбоциты


действие происходит в присутствии двухвалентных катионов (Са2+) и поначалу является обратимым. Далее, по мере образования дополнительных кон-тактов, происходит стабилизация агрегата.

У 25% жителей Северной Европы в связи с по­лиморфизмом аллелей в GPIIIa имеется ассоциация В развитием ишемической болезни сердца и инфар­кта миокарда в относительно молодом возрасте.

Использование ингибиторов для комплекса GPIIb-IIIa на ранних стадиях тромбоза приводит к быстрому восстановлению кровотока по тром-бированному сосуду и позволяет избежать инфар­кта тромбированного органа.

Рецепторы для физиологических стимуляторов

Рецепторы для физиологических стимулято­ров (тромбина, АДФ, адреналина, серотонина,


эйкозаноидов и др.) представляют собой транс­мембранные пептиды с 7 гидрофобными повто­рами, которые 7 раз пересекают плазматическую мембрану (рис. 20). Между ними расположены крупные гидрофильные участки, обращенные наружу и внутрь клетки. Цитоплазматический С-конец может фосфорилироваться протеинки-назами, прежде всего цАМФ-зависимой кина-зой. В цитоплазматических петлях находятся места связывания с системой G-белков, которые в качестве внутриклеточных посредников обес­печивают разнообразные физиологические реак­ции, в первую очередь освобождение внутрен­него пула Са2+. Каждый активированный тром-биновый рецептор приводит к образованию не­скольких внутриклеточных мессенджеров акти­вации тромбоцитов.


 


Органеллы тромбоцитов


В цитоплазме тромбоцитов расположены митохондрии, пероксисомы (содержат катала-зу), включения гликогена, лизосомы и гранулы, содержащие пулы хранения различных веществ. В тромбоцитах выделяют 3 вида органелл хра­нения: а-гранулы, электронно-плотные тельца (8-гранулы) и лизосомы (у-гранулы). На рис. 21 представлены основные компоненты, которые могут освобождаться из гранул и цитозола тром­боцитов при действии разных стимуляторов.

В а-гранулах хранится до 30 различных бел­ков, большинство из которых были синтезирова­ны еще в мегакариоцитах: β-тромбоглобулин, фактор 4 тромбоцитов, фактор V, фактор Виллеб-ранда, фибриноген, тромбоспондин, фибронек-тин, витронектин, оц-макроглобулин, Р-селектин, фактор роста тромбоцитов (PDGF), ингибитор тка­невого активатора плазминогена типа 1 (PAI-1), α2-антиплазмин, α1-антитрипсин, протеин S, лейкоцитарный хемотаксический фактор, высо­комолекулярный кининоген и др. Участие бел­ков α-гранул в физиологических и патологичес­ких процессах многостороннее: а) митогенный и хемотаксический эффекты; б) адгезивное действие, модулирование агрегации тромбоцитов; в) учас­тие в пламенном гемостазе; г) вазоактивное дей­ствие; д) иммунные и другие эффекты.


В плотных тельцах (5-гранулы) хранятся суб­станции, вызывающие, прежде всего, сосудистые реакции и агрегацию тромбоцитов: адениловые

Рис. 21. Секретируемые факторы тромбоцитовприсут­ствуют в тромбоцитах в 3 видах гранул хранения. Разные стимуляторы приводят к освобождению содержимого гра­нул тромбоцитов


Тромбоциты


 


нуклеотиды (АТФ, АДФ, АМФ, ц-АМФ, ГДФ),

серотонин, адреналин, норадреналин, дофамин, гистамин, Са2+ и др. Высвобождающиеся из пула хранения АТФ и АДФ быстро метаболизируют-ся в плазме до АМФ и аденозина; последние об­ладают прямым коронарорасширяющим действи­ем. АДФ является важнейшим физиологическим метаболитом, обеспечивающим первичный гемо­стаз, стимулируя агрегацию тромбоцитов.

В лизосомах (γ-гранулы) находятся гидроли­тические ферменты - пероксидаза, глюкозидазы, галактозидаза или β-глицерофосфатаза, кислая фосфатаза, неспецифическая эстераза. Лизосомы секретируют хранящийся в них секрет только при необратимой активации.

Тромбоциты способны секретировать содер­жимое гранул как частично при обратимой ак-


тивации и в процессе трофических взаимодей­ствий с органной капиллярной сетью, так и пол­ностью при реакции освобождения, связанной с необратимой активацией. После дегрануляции цитоплазма тромбоцитов «опустошена». В неак­тивированных тромбоцитах цитоплазма может выглядеть «опустошенной» при врожденном де­фекте заполнения гранул, приводящем к дефи­циту пула хранения - синдрому «серых» тромбо­цитов.

После секреции большинство гранулярных мембран деградирует, гранулы не восстанавлива­ются, и тромбоциты теряют свою физиологичес­кую активность. Если они находятся в токе кро­ви, измененная форма способствует их быстрой элиминации в селезенке.


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.