Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Цель химических превращений – восстановление железа из окислов и соединение его с углеродом

Металлургия

Металлургия – это наука о способах получения металлов и металлических сплавов. Сплав – это соединение двух или более компонентов, главным из которых является металл.

Основоположник металлургии – Д.К.Чернов

История человечества неразрывно связана с использованием металлов.

 

5-4 тысячелетие до н.э. – медный век (выплавка меди и олова)

3-2 тысяч. до н.э. – бронзовый век (сплав меди с оловом)

2-1 тыс. до н.э. – железный век ( железо восстановленное из руды, сталь – сплав железа с углеродом)

В настоящее время известно около 80 металлов.

Среди металлов железо занимает третье место по распространенности в земной коре (4,2 %) после кремния(26 %) и алюминия(7,4 %). Железо в недрах земли в чистом виде не встречается. Оно входит в состав горных пород в различных химических соединениях. В природе известно более 300 разновидностей горных пород, содержащих железо, но далеко не все они представляют собой железные руды. Железными рудами принято называть такие горные породы, из которых экономически выгодно извлекать железо методом плавки. Экономическая целесообразность извлечения железа из руд зависит от уровня развития техники и характеристики месторождений.

Краткая классификация металлов и сплавов.

I Черные металлы и сплавы (Fe+C)

1. Сталь (содержит до 2,14% С)

2. Чугун (содержит от 2,14 до 6,67% С)

3. Ферросплавы (> 6,67% С)

II – Цветные металлы и сплавы

1. Легкие

а) на основе Al (Al+Si) – силумин

б) на основе Mg (↑ корозион. стойкость)

и т.д.

2. Тяжелые

а) на основе Cu

- Cu+Sn (свинец) →бронза

- Cu+Zn (цинком)→латунь

б) на основе Sn

в)на основе Pb

и т. д.

3. Тугоплавкие

а) На основе Ti – титана (↑ тверд.)

б) На основе Mo – молибдена

в) На основе Ni – никеля

г) На основе Со – кобальта

Металлы склонны к окислению, поэтому в земной коре они содержатся виде химических соединений (исключение золото, платина, серебро, медь.)


Общая масса металлов в земной коре – 25% из них:

Al = 7,4% Zn=0,005%

Fe=4,2% Ag=0,00001%

Cu=0,01% Au=0,0000005%


Производство чугуна

Чугун – сплав железа с углеродом содержащем углерода более 2,14% с присутствием Si=4%, Mn=2%, S, P.

Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры.
Период с 9 – 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку.

Цель доменного производства состоит в получении чугуна из железных руд путем их переработки в доменных печах. Железные руды вносят в доменную печь химически связанное с другими элементами железо. Восстанавливаясь и науглераживаясь в печи, железо переходит в чугун. С марганцевой рудой в доменную печь вносится марганец для получения чугуна требуемого состава.

Чугун производят в

Доменных печах

Исходные материалы для плавки

Сырыми материалами доменной плавки являются

· железные и марганцевые руды

· флюсы

· топливо

1.Руда – природное минеральное сырьё содержащие металл, который необходимо извлечь наиболее экономичным способом.

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо.
Наибольшее практическое значение имеют красные железняки (руда гематит, Fe2O3; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe3О4; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO2•nH2O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО3; содержит около 48% Fe).

Среди известных видов руд наиболее распространены в природе руды осадочного происхождения. Из этих руд выплавляется более 90 % чугуна. Железная руда состоит из минерала (орудняющего вещества), пустой породы и примесей. Главной частью руды является рудный минерал, в состав которого входит железо. Чаще всего железо в минерале химически связано с кислородом, реже с другими элементами и соединениями. Пустая порода состоит из кремнезема, глинозема, извести.
Примеси руд делятся на полезные и вредные. Полезными примесями считаются марганец, хром, никель, ванадий, вольфрам, молибден и др. Вредные примеси – сера, фосфор, мышьяк, цинк, свинец и в большинстве случаев медь – либо ухудшают качество металла, либо разрушающе действуют на огнеупорную футировку доменной печи.

Состав руды: 1. Рудный минерал

2.Пустая порода – минералы не осложняющие

переработку руды→ легко переходят в шлаки

3.Примеси. Вредные примеси сера, фосфор,

мышьяк → осложняющие переработку

В зависимости от типа рудного минерала железные руды делятся на четыре основные группы:

а) Красный железняк (гематит)

45-65% Fe

Красный железняк или гематитовая руда. Минерал гематит – безводный оксид железа, в чистом виде содержит 70 % железа и 30 % кислорода. Это наиболее распространенная железная руда.

б) Бурый железняк (лимонит)

25-50% Fe

Бурый железняк представлен железосодержащими минералами водных оксидов железа, которые содержат от 59,8 % до 69 % железа.

в) Магнитный железняк (магнетит)

40-70% Fe

Магнитный железняк или магнетитовая руда. Минерал – магнетит (72,4 % железа и 27,6 % кислорода)

 

Чем выше содержание железа в железной руде, тем экономичнее и производительнее работает доменная печь

Кроме перечисленных разновидностей железных руд, железо в значительном количестве (46,6%) содержится в серном колчедане или пирите. Однако пирит в доменную плавку не дают, его используют в качестве сырья в сернокислотной промышленности, а отходы в виде окисленного железа применяют при производстве агломерата. Также находят промышленное применение бедные железные руды: магнетитовые и гематитовые кварциты, в которых содержится до 45 % кремнезема в виде свободного кварца. Кварциты обогащают, получая железнорудный концентрат, содержащий более 60 % железа.

Критерием оценки железных руд являются:

1. Содержание железа.

2. Тип основного железосодержащего минерала.

3. Состав и свойства пустой породы.

4. Содержание вредных примесей.

5. Стабильность химического состава.

 

2.Флюсы - необходимы для удаления из доменной печи тугоплавких пустых пород. Сплавляясь с ними они образуют легко выводимые шлаки. Флюсы – окатыши из известняка.

Флюсом называются добавки, загружаемые в доменную печь для понижения температуры плавления пустой породы руды, офлюсования золы кокса и придания шлаку требуемых технологией выплавки чугуна физико-химических свойств. Для руд с кремнеземистой (кислой) пустой породой в качестве флюса используют материалы, содержащие оксиды кальция и магния: известняк и доломитизированный известняк. Важнейшим требованием, предъявляемым к основным флюсам, является низкое содержание в них кремнезема и глинозема и вредных примесей серы и фосфора.

 

3.Кокс – из каменного угля. Является топливом, а также восстанавливает оксиды железа. (Вместо кокса может использоваться природный газ.)

Его роль состоит в обеспечении процесса теплом и восстановительной энергией. Кроме того кокс разрыхляет столб шихтовых материалов и облегчает прохождение газового потока в шихте доменной печи.

В качестве топлива в современной доменной плавке применяют кокс, мазут, природный и коксовый газы и каменноугольную пыль. Основным видом топлива является кокс. Коксом называется пористое спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании его до 950-1200С без доступа воздуха. Это единственный материал, который сохраняет форму куска в доменной печи на всем пути движения от колошника к горну. Благодаря этому обстоятельству обеспечивается прохождение газового потока через слой жидких, полужидких и твердых материалов в доменной печи.
В нижней части печи раскаленный кокс образует своеобразную дренажную решетку, через которую в горн стекают жидкие продукты плавки. Высота столба шихты в современной доменной печи достигает 30 м, поэтому кокс, особенно в нижней части печи, воспринимает большие нагрузки. Отсюда вытекает основное требование, предъявляемое к коксу: высокая механическая прочность как в холодном, так и в нагретом состоянии.

Загружаемый в доменную печь кокс не должен содержать ни мелких кусков, ухудшающих газопроницаемость шихты, ни чрезмерно крупных кусков, которые, как правило, поражены трещинами и легко разрушаются в печи с образованием мелких фракций.

Кокс должен быть пористым для обеспечения хорошей горючести в горне печи и обладать высокой теплотой сгорания для получения требуемого количества тепла и необходимой температуры. Теплота сгорания кокса зависит от содержания в нем углерода, которое определяется содержанием золы, вредных примесей и летучих веществ в коксе. Чем выше содержание золы, вредных примесей и летучих веществ в коксе, тем меньше в нем углерода и меньше теплота его сгорания. Кроме того, с увеличением содержания золы и серы в коксе возрастают количество шлака, расход тепла на его расплавление и снижается механическая прочность кокса, а с увеличением содержания серы и фосфора в коксе ухудшается качество чугуна. Повышенное содержание летучих веществ в коксе свидетельствует о незавершенности процесса коксования, что приводит к снижению механической прочности кокса. Чрезмерно низкое содержание летучих в коксе, получающееся при пережоге кокса, также отрицательно сказывается на его качестве. Поэтому кокс должен содержать по возможности меньше золы, серы, фосфора и умеренное количество летучих веществ.

В коксе всегда содержится влага, поступающая в кокс при его тушении на коксохимическом заводе или из атмосферы. В связи с тем, что кокс в доменной печи загружают по массе, содержание влаги в коксе должно выдерживаться постоянным для сохранения заданного теплового режима печи.

Подготовка исходных материалов к плавке

Шихта- подготовленные к плавке исходные материалы (руда, флюсы и топливо)

1. Дробление – измельчение руды до 30-80мм.

и сортировка руды по размеру кусков.

 

Доменная печь работает нормально, если она загружена кусковым материалом оптимального размера. Слишком крупные куски руды за время опускания их в печи не успевают прогреваться на всю длину, часть материала расходуется бесполезно. Слишком мелкие куски плотно прилегают друг к другу и нет выхода для газов. Оптимальный кусок 30-80 мм. Поэтому руду с кусками больше 100 мм подвергают дроблению.

Мелочь также не пригодна к плавке и ее подвергают окускованию. Для этого в металлургии применяют агломерацию – окускование путем спекания.

Исходный материал для агломерации рудная мелочь и колошниковая пыль (отход доменного производства) + мелкий кокс (до 3 мм) + недопекшийся агломерат + измельченный известняк (до 20 мм) = шихта.

· Слегка увлажненную и перемешенную шихту слоем 200-300 мм загружают на решетки тележек образующих рабочую ленту агломерационной машины, затем поджигают. Воздух для горения просасывается через слой шихты с помощью вакуумных устройств, расположенных под решетками

В зоне горения t=1500°C происходит спекание шихты в пористый продукт –

агломерат.

Достоинства агломерата:

1) пористость и прочность кусков

2) введение флюса - известняка увеличивает производительность доменной печи и снижает расход кокса.

· Еще один способ окускования – брикетирование. Это путем прессования смеси порошковых мат-лов со связующими материалами (глиной, жидким шлаком, смолой и т.д.)

· Следующий способ окускования производство окатышей. Это перемешивание рудной мелочи и пыли небольшим количеством глины или извести. После увлажнения эту смесь помещают в барабан или наклонную чашку. Шихта при перемещении слипается, образуя окатыши 25-30 мм. Затем их сушат или обжигают для упрощения.

2. Усреднение

Железные руды по условиям залегания и добычи всегда имеют непостоянный химический состав. Значительные и частые колебания содержания железа и пустой породы в рудах вызывают нарушение теплового состояния доменной печи и химического состава шлака. Это приводит к нарушению ровного хода печи, при котором неизбежны повышение расхода кокса, снижение производительности печи и ухудшение качества выплавляемого чугуна.

Чтобы уменьшить отрицательное влияние непостоянства химического состава руд на показатели доменной плавки, руды подвергают усреднению. Усреднением называют перемешивание железорудных материалов с целью выравнивания химического и гранулометрического составов. В связи с тем, что почти все добываемые руды подвергают окуксованию, основное назначение усреднения состоит прежде всего в уменьшении колебаний содержания железа и кремнезема в рудах. Необходимо добиться такого усреднения руд, при котором колебания содержания железа и кремнезема в руде не превышали бы 0,5 % от среднего значения.

3.. Обогащение руды - выделение пустой породы с получением концентрата, содержащего 65-66% Fe

Обогащением называется процесс разделения рудного минерала и пустой породы с целью повышения содержания металла в руде и уменьшения содержания пустой породы, а в некоторых случаях и вредных примесей. Все способы обогащения основаны на различии физических свойств рудных минералов и пустой породы. В результате обогащения руды получают:

· концентрат – продукт, в котором содержится большая часть извлекаемого металла;

· хвосты – отходы при обогащении руды, в которых содержится незначительное количество металла;

· промежуточный продукт, в котором содержание металла больше, чем в хвостах и меньше, чем в концентрате.

I. Основной способ обогащения – магнитный. Минералы отделяют магнитом или электромагнитом.

II. Другой способ обогащения – гравитационный. (основан на осаждении минерала, т.к. он имеет большую плотность)

Основан на различии плотности и скорости падения зерен в жидкости и на воздухе. Т.е. рудной минерал тонет, а частицы пустой породы всплывают. Простейший вид - это промывка водой железной руды для удаления песчано-глинистой пустой породы.

III. Ещё один способ обогащения – флотация. (основан на способности некоторых минералов прилипать к водным пузырькам) используется метод редко

Основан на избирательном применении некоторых минеральных частиц, взвешенных в водной среде, к поверхности пузырьков воздуха и поднятия их частиц на поверхность.

Доменная плавка

Доменный процесс представляет собой совокупность механических, физических и физико-химических явлений, протекающих в работающей доменной печи.
Загружаемые в доменную печь шихтовые материалы – кокс, железосодержащие компоненты и флюс – в результате протекания доменного процесса превращаются в чугун, шлак и доменный газ.

В химическом отношении доменный процесс является восстановительно- окислительным: из оксидов восстанавливается железо, а окисляются восстановители. Однако доменный процесс принято называть восстановительным, так как цель его состоит в восстановлении оксидов железа до металла.

Агрегатом для осуществления доменного процесса служит печь шахтного типа
(см. приложение 2). Рабочее пространство доменной печи в горизонтальных сечениях имеет круглую форму, а в вертикальном разрезе – своеобразное очертание, называемое профилем.

Важнейшим условием осуществления доменного процесса в рабочем пространстве печи является непрерывное встречное движение и взаимодействие опускающихся шихтовых материалов, загружаемых в печь через колошник, и восходящего потока газов, образующегося в горне при горении углерода кокса в нагретом до 1000 – 1200( С воздухе (дутье), который нагнетается в верхнюю часть горна через расположенные по его окружности фурмы. К дутью может добавляться технический кислород, природный газ, водяной пар.

Домна – грандиозная конструкция – это шахтная печь высотой 30-50 метро позволяют выплавить в сутки до 5000 т. чугуна. Толстые стены (70 см) из огнеупорной глины, снаружи обшиты кожухом из стальной брони.

 

Рис. 1. Химия и технология доменного процесса: а – состав чугуна; б – схема доменной печи; в – химические реакции доменного процесса; г – условия оптимизации процессов


Снизу через фурму (устройство для подвода дутья) поступают горячий воздух, кислород, метан, а навстречу движется шихта – смесь, состоящая из кокса (источник энергии и восстановитель), подготовленного рудного концентрата и флюса (последний для связывания пустой породы в шлаки). Домну через колошник (верхняя часть шахтных доменных плавильных печей) покидает доменный газ, содержащий до 30% СО.
Домна – сложнейшее инженерное сооружение высотой более 60 м и диаметром 10 м, снабженное системой контроля и управления, предназначенное для выплавки чугуна – продукта химико-восстановительных процессов.
Далее на схеме показаны основные химические реакции доменного процесса (рис. 1, в). Это – горение кокса в зоне над горном (нижняя часть домны, где происходит горение топлива). Шлак выполняет также функцию защиты чугуна от окисления. Далее происходит собственно восстановление железа, затем – восстановление примесных элементов и науглероживание железа и, наконец, образование шлаков.
Главное в любой технологии – это оптимизация процессов и высокая производительность аппаратов, экономичность производства. Остановимся на этом вопросе (рис. 1, г).
Как видно, на производительность доменной печи Пр влияют ее объем Vд.п и скорости химических реакций .

Рис. 2. Факторы оптимизации доменного процесса

Подготовленные исходные материалы называются шихта.

Сущность доменной плавки:

раздельная загрузка шихты→горение кокса→нагрев шихты→взаимодействие её с горячими газами→ восстановление железа из окислов и соединение его с углеродом→образование в нижней части печи 2-х жидких слоев – чугун + шлак.

Схему доменной печи можно подробно рассмотреть в литературе по данной дисциплине

Основные части доменной печи: колошник , шахта, распар, заплечики, фурменный пояс, горн, лещадь.

1) В верхней части расположен засыпной аппарат , состоящий из двух поочередно опускающихся конусов (чтобы доменные газы не могли вырваться в атмосферу) Шихтовые материалы загружают в доменную печь при помощи засыпного аппарата отдельными порциями – подачами. Они располагаются на колошнике чередующимися слоями кокса, руды или агломерата и флюса при работе на не полностью офлюсованном агломерате. Загрузку подач производят через 5 – 8 мин. по мере освобождения пространства на колошнике в результате опускания материалов. Материалы на колошник подают специальными тележками – скипами, перемещающимися по рельсам наклонного моста. Объем материалов одной подачи соответствует объему нескольких скипов, поэтому подача на колошник подается по частям несколькими скипами. При этом одну часть скипов подачи загружают коксом, а другую – железосодержащими компонентами и флюсом. При полностью офлюсованном агломерате подача состоит только из скипов с агломератом и коксом.

 

Два подъемника с ковшами доставляют шихту в верхнюю воронку → конус опускается →шихта загружается в нижнюю и в печь.

2) Для осуществления процесса горения через фурменные отверстия подается в горн горячий кислород (1200°С)→ горение → образуется углекислота, которая взаимодействует с коксом.

CO2+C=2CO

Кокс поступает в горн нагретым до 1400 – 15000С. В зонах горения кокса углерод взаимодействует с кислородом дутья. Образующийся в зонах горения диоксид углерода при высокой температуре и избытке углерода неустойчив и превращается в оксид углерода. Таким образом, за пределами зон горения горновой газ состоит только из оксида углерода, азота и небольшого количества водорода, образовавшегося при разложении водяных паров или природного газа. Смесь этих газов, нагретая до 1800 – 2000( С , поднимается вверх и передает тепло материалам, постепенно опускающимся в горн

При взаимодействии жидких продуктов плавки с раскаленным коксом в заплечиках и горне происходит усиленное восстановление кремния, марганца и фосфора из их оксидов, растворенных в шлаке. Здесь же поглощенная металлом в ходе плавки сера переходит в шлак. Железо и фосфор печи полностью восстанавливаются и переходят в чугун, а степень восстановления кремния и марганца и полотна удаления из чугуна серы в большой мере зависят от температурных условий, химического состава шлака и его количества.

Жидкие чугун и шлак разделяются в горне благодаря различным удельным массам. По мере скопления их в горне чугун выпускают через чугунную летку, а шлак – через шлаковые летки (верхний шлак) и чугунную летку во время выпуска чугуна (нижний шлак).

Все перечисленные процессы протекают в доменной печи одновременно, оказывая взаимное влияние.

3) В нижней половине шахты - ЛЕЩАДИ начинается образование жидкого шлака из составных частей пустой породы руды и флюса. Понижению температуры плавления шлака способствуют невосстановленные оксиды железа и марганца. В стекающем вниз шлаке под действием возрастающей температуры постепенно расплавляется вся пустая порода и флюс, а после сгорания кокса – и зола.

Цель химических превращений – восстановление железа из окислов и соединение его с углеродом

Одним из условий получения чугуна в доменной печи является удаление кислорода из оксидов, металлы которых входят в состав чугуна. Процесс отнятия кислорода от оксида и получения из него элемента или оксида с меньшим содержанием кислорода называется восстановлением. Наряду с восстановлением протекает окисление вещества, к которому переходит кислород оксида. Это вещество называется восстановителем.

Восстановительные процессы сопровождаются выделением или поглощением тепла. Химическая прочность оксида определяется силами химической связи данного элемента с кислородом.

 

 

при температуре выше 5700

Fe2O3 → Fe3O4 → FeO →Fe

3Fe2O3+CO = 2Fe3O4+CO2+Q

3Fe3O4+CO = 3FeO+CO2+Q

FeO+CO = Fe + CO2+Q

Эти реакции обратимы, при снижении температуры равновесие сдвигается влево.

3) В нижней части горна образуется жидкий слой чугуна, который через каждые 2-3 часа выпускается через чугунные летки – специальные желоба. Чугун сливается в ковши.

Шлак сливается через шлаковые летки. Шлаки используют для производства цемента, теплоизоляции – шлакоблоки.

4)Газообразные продукты реакции – колошниковые газы (окись углерода + азот + пыль) выводится через колошник, очищается и используется для подогрева воздуха, подающегося в горы.

 

Газовый поток

Высокопроизводительная и экономичная работа доменной печи в значительной мере зависит от того, как организовано движение и распределение газов и шихты в ее рабочем пространстве. Движение газов и распределение их в печи определяется множеством факторов, но главным из них являются гранулометрический состав шихты и ее распределение на колошнике во время загрузки и перераспределение при движении в доменной печи. В свою очередь и движущийся газовый поток влияет на распределение шихты.

Газы в доменной печи движутся через слой шихты снизу вверх под действием разности давлений, зависящей от величины сопротивления загруженной в печь шихты и количества воздуха, нагнетаемого в горн воздуходувной машиной. Проходя путь 24 – 26 м в течение нескольких секунд, газовый поток должен выполнить тепловую и восстановительную работу и обеспечить ровный сход шихтовых материалов от колошника к горну. Исходя из этих функций газового потока к распределению газов предъявляются противоречивые требования. Для наиболее полного использования тепла и восстановительной способности газового потока газы по сечению печи должны распределяться равномерно, иными словами, температура и состав газов во всех точках сечения доменной печи должны быть одинаковыми, а шихта – в равной мере нагретой и восстановленной.

Для обеспечения ровного схода шихты газовый поток по сечению печи должен распределяться неравномерно, проходя в большем количестве у стен и в осевой зоне печи, т. е. там, где чаще всего бывает меньше руды или агломерата.

В действительности же в доменной печи невозможно достичь равномерного распределения газов по сечению вследствие специфических особенностей доменного процесса и конструкции доменной печи.

Наиболее важным показателем, характеризующим распределение газового потока по сечению столба шихты, является сопоставление количества газов, проходящих через равновеликие площади заполненного шихтой сечения печи в единицу времени.

 

 

Образование чугуна и шлака

Науглераживание железа

Восстановленное в доменной печи из руды железо поглощает углерод и другие элементы, образуя чугун. Процесс науглераживания железа начинается с момента его появления в виде твердой губки в зоне умеренных температур.
Обладая повышенной химической активностью, сажистый углерод взаимодействует с атомами железа и образует карбиды железа. Науглераживание губчатого железа уже заметно протекает при 400 – 5000С. По мере науглераживания железа температура плавления его понижается. Однако науглераживание железа в твердом состоянии является лишь начальной стадией этого процесса, способствующей понижению температуры плавления металла. Более интенсивно науглераживание протекает после перехода металла в жидкое состояние. Капли металла, стекая в горн печи, контактируют на поверхности кусков раскаленного кокса с углеродом, в результате чего содержание углерода в сплаве резко возрастает. На горизонте фурм за пределами зон горения содержание углерода в чугуне достигает 3,8 –
4,0%. Окончательное науглераживание металла происходит в горне печи.

Переход других элементов в чугун (марганца, кремния, фосфора и серы) осуществляется по мере их восстановления на различных горизонтах рабочего пространства печи. Марганец при выплавке передельного чугуна заметно переходит в металл уже в распаре, однако наиболее интенсивное насыщение чугуна марганцем происходит в заплечиках и горне при восстановлении марганца. Основная масса кремния переходит в чугун в нижней части заплечиков и в горне. Содержание фосфора в пробах металла из распара почти такое же, как и в конечном чугуне, а иногда и выше. Это объясняется тем, что в металл из распара, попадает не только фосфор, который восстановился здесь и выше, но и фосфор, возгоняющийся из нижних горизонтов печи. Фосфор начинает переходить в металл уже в нижней части шахты.

Окончательное содержание углерода в чугуне не поддается регулированию и зависит от элементов в сплаве. Марганец и хром, являясь корбидообразующими элементами, способствуют увеличению содержания углерода в чугуне. Кремний и фосфор, образуя более прочные с железом соединения, разрушают карбиды железа и понижают содержание углерода в чугуне. Если в передельном маломарганцовистом чугуне содержится 4 – 4,6% углерода, то в зеркальном чугуне, содержащем 10 – 25 % марганца, углерода содержится 5 – 5,5 %.

Содержание марганца и кремния сильно влияет на структуру чугуна, что имеет очень важное значение при производстве литейного чугуна, используемого в машиностроении. Известно, что углерод в чугуне может находиться в химически связанном состоянии в виде карбида и в свободном состоянии в виде графита. В литейном чугуне благодаря повышенному содержанию кремния значительная часть углерода находится в виде графита, что способствует повышению прочности отливок. В изломе такой чугун имеет серый цвет. Увеличение содержания карбидов железа в чугуне повышает его хрупкость. В изломе такой чугун имеет белый цвет. Качество чугуна для отливок также зависит и от условий выплавки чугуна в доменной печи.


Образование шлака

В доменной печи шлак образуется под действием высоких температур в результате плавления пустой породы железосодержащих материалов и флюса, к которым в горне присоединяется зола сгоревшего кокса. Шлакообразующими оксидами являются SiO2, CaO, MgO, Al2O3, FeO, MnO, а также сульфиды металлов, преобладающим из которых является CaS.

Образованию шлака предшествуют процессы размягчения и спекания пустой породы и флюса, сопровождающиеся образованием твердых растворов и различных химических соединений. Эти процессы представляют собой промежуточное звено при переходе вещества из твердого состояния в жидкое. Чем больше температурный интервал, в котором протекает превращение шлакообразующих компонентов из твердого состояния в жидкое, тем большую часть по высоте печи занимает вязкая масса, заполняющая пустоты между кусками кокса и препятствующая движению и распределению газов. В связи с этим температурный интервал размягчения шлакообразующих компонентов должен быть по возможности меньшим.

В процессе шлакообразования различают первичный, промежуточный и конечный шлаки. Первичный шлак появляется в начальной стадии шлакообразования в результате плавления легкоплавких соединений. Первичный шлак, перемещаясь в зоны с более высокими температурами, нагревается, а химический состав его непрерывно изменяется в следствии восстановления железа и марганца из соответствующих оксидов и растворения в шлаке новых количеств CaO и MgO, увеличивающих количество шлака. Конечный шлак образуется в горне после растворения в шлаке золы сгоревшего кокса и остатков извести и окончательного распределения серы между чугуном и шлаком.

Продукты доменной плавки

Конечными продуктами доменной плавки являются чугун, шлак, колошниковый газ и колошниковая пыль.

Чугун представляет собой многокомпонентный сплав железа с углеродом, марганцем, кремнием, фосфором и серой. В чугуне также содержится незначительные количества водорода, азота и кислорода. В легированном чугуне могут быть хром, никель, ванадий, вольфрам и титан, количество которых зависит от состава проплавляемых руд.

В зависимости от назначения выплавляемые в доменных печах чугуны разделяют на три основных вида:

· передельный, идущий на передел в сталь;

· литейный, предназначенный для получения отливок из чугуна в машиностроении;

· доменные ферросплавы, используемые для раскисления стали в сталеплавильном производстве.

Передельный чугун подразделяют на три вида:

2. Передельный коксовый (марки М1, М2, М3, Б1, Б2).

3. Передельный коксовый фосфористый (МФ1, МФ2, МФ3).

4. Передельный коксовый высококачественный (ПВК1, ПВК2, ПВК3).

Литейный чугун после выпуска из доменной печи разливают в чушки и в холодном виде направляют на машиностроительные заводы, где для отливки деталей машин его вторично подвергают расплавлению в специальных печах- вагранках.

Литейный коксовый чугун выплавляют семи марок: ЛК1 – ЛК7. Каждую марку подразделяют на три группы по содержанию марганца, пять классов по содержанию фосфора и на пять категорий по содержанию серы.

 

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.