Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

В трехмерном евклидовом пространстве



Известно, что всякий многочлен третьей степени с действительными коэффициентами имеет, по крайней мере, один действительный корень. Поэтому всякий линейный, в том числе и ортогональный оператор имеет, по крайней мере, одно собственное значение , причем . Пусть – единичный собственный вектор ортогонального оператора с собственным значением . Обозначим и рассмотрим . Очевидно, – двумерное евклидово пространство. Выберем произвольные векторы и . Тогда

– собственный ортогональность .

Обозначим такой линейный оператор, что

( отличается от только областью определения). Очевидно, – тоже ортогональный оператор. Как и в любом евклидовом пространстве, в пространстве можно выбрать ортонормированный базис . Тогда – ортонормированный базис пространства . Матрица оператора в этом базисе имеет блочно диагональный вид ,

где – матрица оператора в базисе . В силу того, что оператор ортогональный, матрица тоже ортогональная. Это значит, что в подходящем ортонормированном базисе она может быть одной из матриц:

 

.

Перечисляя всевозможные принципиально различные виды матриц в подходящем ортонормированном базисе пространства , получаем

а) .

 

, – тождественный оператор;

, – симметрия относительно оси с направлением вектора ;

, – симметрия относительно плоскости, перпендикулярной вектору ;

, – поворот вокруг оси с направлением вектора .

 

б) .

, – симметрия относительно плоскости, перпендикулярной вектору ;

, – симметрия относительно начала координат;

, – симметрия относительно оси с направлением вектора ;

, – композиция поворота вокруг оси с направлением вектора и симметрии относительно плоскости, перпендикулярной этому же вектору.

Таким образом, все ортогональные операторы в трехмерном евклидовом пространстве – это: тождественный; симметрия относительно плоскости; симметрия относительно оси; симметрия относительно начала координат; поворот вокруг оси и композиция поворота вокруг оси и симметрии относительно плоскости, перпендикулярной этой же оси.

 

Симметричные операторы в

Как было доказано в § 3, для любого симметричного оператора в существует ортонормированный базис, в котором матрица оператора имеет диагональный вид. Перечислим все принципиально возможные различные случаи.

– тождественный оператор;

– симметрия относительно оси;

– симметрия относительно плоскости;

– симметрия относительно начала координат;

(перечисленные операторы одновременно являются и ортогональными);

– нулевой оператор;

– проектирование на ось с направлением вектора ;

– проектирование на плоскость, перпендикулярную вектору ;

– растяжение при и сжатие при ;

– растяжение от оси при и сжатие к оси при ;

– растяжение вдоль оси при и сжатие вдоль оси при

.

Рассмотрим теперь некоторую диагональную матрицу

,

в которой, например, . Тогда

 

,

т. е. оператор, заданный матрицей , есть композиция растяжений (или сжатий) вдоль трех взаимно перпендикулярных осей и симметрии относительно оси. Любая диагональная матрица может быть представлена в виде произведения перечисленных выше десяти простейших матриц. Например, при положительных и

 

,

откуда вытекает, что оператор с такой матрицей есть композиция двух растяжений вдоль осей, проектирования на плоскость и симметрии относительно другой плоскости.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.