Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Порові комплекси багатші в активних клітинах. Так у клітинах підшлункової залози вони займають 103 мкм2, у сперматозоїдах їх лише декілька на 1 мкм2

Поняття про ядро, його значення для життєдіяльності клітини.

 

Ядро (лат. nucleus, грец. caryon — ядро) є вмістилищем генетичного матеріалу і місцем, де цей матеріал реалізується. Біологічне значення ядра визначається головним його компонентом — молекулами ДНК, здатними до реплікації та транскрипції. Ці дві властивості ДНК лежать в основі двох найважливіших функцій ядра клітини: (1) подвоєння спадкової інформації та передача її в ряді клітинних поколінь, (2) регулювання транскрипції (переписування інформації з ДНК на іРНК) і транспорт синтезованих всіх трьох видів РНК (іРНК, рРНК, тРНК) у цитоплазму клітини. Іншими словами, ядро є системою генетичної детермінації та регуляції білкового синтезу. Реплікація молекули ДНК дає можливість при мітозі двом дочірнім клітинам отримати якісно і кількісно однакові об’єми генетичної інформації.

Маса ДНК в інтерфазній клітині людини дорівнює ± 5 пг, в дрозофіли ±0,25 пг, але в клітинах тритона ± 95 пг. В ядрі є так звані репараційні ферменти, які ліквідують спонтанне пошкодження молекули ДНК. Клітина звичайно містить одне ядро, рідше 2–3 (у печінкових клітинах) або багато (в остеокластах).

Аналогом ядра в прокаріот є нуклеоїд (від лат. nucleus — ядро і грец. eides — подібний), сплетена “гола” (не оточена білками), циркулярна (замкнута) ДНК, занурена в цитоплазму. Нуклеоїд представлений ДНК, накрученою на стабілізаційні білки та РНК.

Розрізняють (1) інтерфазні ядра — звичайні ядра функціональних клітин, що не діляться, (2) метаболічні ядра і (3) ядра клітин під час мітозу.

 

Будова інтерфазного ядра

А) будова та функції каріолеми, поняття про ядерні пори

Ядро клітини в інтерфазі, в період, коли вона не ділиться, характеризується наявністю таких складових, як каріолема (оболонка ядра), каріоплазма (ядерний сік), ядерця і хроматин, який є сукупністю інтерфазних хромосом тією чи іншою мірою деконденсованих, тобто потоншених.

Каріолема (від грец. karion — ядро i lema — оболонка), або нуклеолема (від лат. nucleus — ядро i lema — оболонка) чи поверхневий апарат ядра в інтерфазній клітині складається з трьох основних компонентів: ядерної оболонки, периферичної щільної пластинки і порових комплексів (рис. 2.29). Каріолема є спеціалізованою частиною загальної мембранної системи цитоплазми.

Найімовірніше, що каріолема утворилася з цистерн гранулярної ендоплазматичної сітки, містить лише 20–35% ліпідів і аж 65–80% білка. Каріолема утворена сплющеними цистернами і має відповідно зовнішню і внутрішню мембрани. Зовнішня мембрана безпосередньо переходить у мембрани грЕС і на своїй поверхні містить рибосоми (полісоми) та сітку проміжних (віментинових) філаментів. Між мембранами знаходиться перинуклеарний простір, завширшки від 10 до 100 нм, який з’єднується з порожнинами ендоплазматичної сітки. Під внутрішньою мембраною міститься ядерна пластинка (ламіна) — сітка проміжних філаментів, яка є периферичною частиною структурованого матрикса ядра. Вона супроводжує внутрішню мембрану ядерної оболонки і тісно зв’язана з білковими глобулами порового комплексу. Щільна ядерна пластинка (1) підтримує форму ядра, бере участь у: (2) впорядкованій укладці хроматину ядра, (3) структурній організації порових комплексів і (4) формуванні каріолем при поділі клітин.

Ядерні пори займають 3–35% поверхні каріолеми, мають діаметр 120 нм і є складною гетерогенною білковою структурою (рис. 2.30). Мають октагональну симетрію, складаються зі зв’язаних між собою білкових глобул діаметром по 25 нм по 8 з кожного боку каріолеми, розміщених по периферії. Від них до центру сходяться фібрили, які формують перегородку (діафрагму). У діафрагмі знаходиться центральна глобула з каналом діаметром 9 нм.

Функції комплексу ядерної пори:

(1) забезпечення регуляції вибіркового транспорту речовин між цитоплазмою і ядром;

(2) активне перенесення в ядро деяких особливих білків;

(3) транспорт РНК, а можливо і субодиниць рибосом з ядра в цитоплазму.

У складі білків порового комплексу виявлені ферменти, зокрема рибонуклеази, які, мабуть, забезпечують заключні етапи процесингу (дозрівання) іРНК.

Порові комплекси багатші в активних клітинах. Так у клітинах підшлункової залози вони займають 103 мкм2, у сперматозоїдах їх лише декілька на 1 мкм2.

Б) каріоплазма

Каріоплазма (від грец. karion — ядро і plasma — виліплене) (рідше називають каріолімфою, або ядерним соком) — це білковий колоїд слабов’язкої консистенції. Мікроскопічно в ній виявляються грудочки хроматину (так звані хромоцентри). У каріоплазмі печінкових клітин щура знаходиться 92–98% білка глобулінової фракції, 12,4% гістонів, 22,2% ДНК і 2–8% РНК. Характер обміну в каріоплазмі досить своєрідний. Вважається, що в ядрах немає окисних ферментів (дегідрогеназ, цитохромоксидази, ферментів переносу електронів). У ній створюються умови для анаеробіозу, при яких хромосоми і функціонують. Крім цього каріоплазма містить глікоген.

Хроматин. У каріоплазмі мікроскопічно спостерігається хроматин, речовина, яка добре фарбується основними барвниками. Хроматин — це матеріал хромосом, дуже довга спіралізована довголанцюгова нитка ДНК, зв’язана з деякою кількістю РНК, гістонів та інших основних білків. Загальна довжина молекул ДНК всіх хромосом в ядрі клітини людини складає понад 2 м, а в S-періоді інтерфази 4 м. До цього часу неостаточно з’ясованими залишаються механізми, які оберігають ці нитки від пере­плутування. Проте, очевидною є необхідність компактного упакування молекул ДНК, яке здійснюється гістоновими білками і забезпечує:

(1) упорядковане розміщення дуже довгих молекул ДНК в досить малому об’ємі ядра;

(2) функціональний контроль активності генів, який спрямовується завдяки особливостям упаковки окремих ділянок генів.

Під світловим мікроскопом в ядрі видні хроматинові гранули, які є конденсованими ділянками хромосом. Конденсований хроматин недоступний для транскрипції отримав назву гетерохроматину (від грец. heteros — інший). Він міститься під каріолемою, навколо ядерця і розкиданий по каріоплазмі. Гетерохроматин поділяють на факультативний і конститутивний. Конститутивний, або структурний хроматин, ніколи не переходить в еухроматин, тоді як факультативний має здатність до такого перетворення. Останній включає ДНК, яка може піддаватися транскрипції, хоч в даний момент перебуває в конденсованому стані. При диференціації ядерних еритроцитів хребетних тварин різко збільшується кількість факультативного гетерохроматину.

Роль кожного з цих різновидів хроматину різна. Тоді як деконденсований хроматин, або еухроматин (від грец. eu — добрий) відкритий для транскрипції, бере участь у передачі генетичної інформації в інтерфазі, то конденсований хроматин, або гетерохроматин не виконує такої функції.

Внутрішньоядерні ферменти. В ядрі є гліколітичні ферменти (гексокіназа і фосфофруктокіназа), які є АТФ-залежними, і такі, що приводять до утворення АТФ у другій стадії гліколізу (фосфогліцераткіназа і піруваткіназа). Другу групу ферментів складають полімерази, а саме — ДНК-полімераза, ДНК-лігаза (з’єднує фрагменти ДНК), ендонуклеази (вирізують ділянки зіпсутої ДНК), ДНК–залежна–РНК–полімераза (входить до складу ДНК і бере участь в синтезі високополімерної РНК).

Функціональне значення і біохімічні характеристики каріоплазми, на жаль, ще не до кінця вивчені. Як і в матриксі цитоплазми, в каріоплазмі відбуваються реакції між глобулярними молекулами в суспензіях, тобто реакції найбільш численні і важливі, хоч досліджені неповністю.

В) ядерце

Ядерце виявляється в інтерфазному ядрі як гранула діаметром 1–2 мкм. У клітині звичайно буває 1-2, рідше більше ядерець, залежно від функціональної активності клітин, необхідності синтезу білка. Під електронним мікроскопом ядерце має вигляд електроннощільної губки з товстими шнурами, що анастомозують між собою, і гранулами речовини, інколи можуть бути видні вакуолі. Ядерце не має оболонки, контур його нерівний. За хімічним складом ядерце містить РНК і білки, зокрема багато кислих білків. В ядерці виявлені також фосфати та іони Ca, K, Mg, Fe, Zn.

За допомогою електронного мікроскопа в ядерці виявлено (1) гранулярну частину (15–20 нм в діаметрі), часто розташовану по периферії — це попередники цитоплазматичних рибосом, (2) фібрили (5–8 нм завтовшки), які є сукупністю первинних транскриптів рРНК і (3) аморфну частину — скупчення петель ДНК, організаторів ядерець і специфічних РНК-зв’язаних білків. Фібрилярні та гранулярні компоненти ядерця формують так звану нуклеолонему — ядерцеву нитку завтовшки 60–80 нм, яка виділяється своєю щільністю на фоні менш щільного матриксу. Ядерце зникає в профазі і появляється в телофазі — утворюється хромосомами — організаторами ядерець.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.