Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Механические гироскопы



Среди механических гироскопов выделяется ро́торный гироско́п — быстро вращающееся твёрдое тело (ротор), ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа — способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё моментов внешних сил.

Впервые это свойство использовал Фуко в 1852 г. для экспериментальной демонстрации вращения Земли. Именно благодаря этой демонстрации гироскоп и получил своё название от греческих слов «вращение», «наблюдаю».

dL/dt=M

а)Прецессия — явление, при котором момент импульса тела меняет своё направление в пространстве под действием момента внешней силы.

Прецессия гироскопа

Прецессия гироскопа

Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Главное свойство прецессии — безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила — гравитация Земли — действует постоянно.

Можно получить эффект прецессии, не дожидаясь замедления вращения волчка: толкните его ось (приложите силу) — начнётся прецессия. С прецессией напрямую связан другой эффект, показанный на иллюстрации ниже — это нутация — колебательные движения оси прецессирующего тела. Скорость прецессии и амплитуда нутации связаны со скоростью вращения тела (изменяя параметры прецессии и нутации в случае, если есть возможность приложить силу к оси вращающегося тела, можно изменить скорость его вращения).

 

2.Условия равновесия твердого тела. Виды равновесия.

Условия равновесия абсолютно твердого тела
относительно инерциальной системы отсчета.
1. Векторная сумма всех сил, действующих на тело, равна нулю: .
2. Сумма моментов всех внешних сил, действующих на тело, относительно любой оси равна нулю: . Ось может быть как реальной (неподвижной), так и мысленно проведенной через любую точку пространства.

Виды равновесия:

а) Безразличное равновесие (при смещении тело оно находит новое положение равновесия)

б) Устойчивое равновесие (тело возвращается в положение равновесия при смещении; мин. потенциал энергии)

в) Неустойчивое равновесие (опоры, подвесы и т.д.)

Любая система стремится к равновесию, к такому положению, чтобы центр масс имеил минимальный потенциал энергии

3.Виды упругих деформаций. Закон Гука

Деформация - изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. ластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

Виды деформаций:

Наиболее простые виды деформации тела в целом:

растяжение-сжатие,

сдвиг,

изгиб,

кручение.

В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, однако, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.

Упругая и пластическая деформация

Основная статья: Упругая деформация

Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случае, полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).

Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющихмеханизм пластической деформации, является теория дислокаций в кристаллах.

Простейшей элементарной деформацией является относительное удлинение некоторого элемента:

где

§ — длина элемента после деформации;

§ — исходная длина этого элемента.

На практике чаще встречаются малые деформации — такие, что .

Закон Гука

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь — сила натяжения стержня, — абсолютное удлинение (сжатие) стержня, а называется коэффициентом упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ) явно, записав коэффициент упругости как

Величина называется Модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов вещества.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

 

4.Модули упругости. Пределы упругости и прочности.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона диаграммы напряжений-деформаций):

где λ (лямбда) — модуль упругости; p — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы); — упругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру). Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения λ также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

§ Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия(удлинения). Часто модуль Юнга называют просто модулем упругости.

§ Модуль сдвига или модуль жесткости (G или ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения). Модуль сдвига является одной из составляющих явления вязкости.

§ Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Предел упругости — максимальная величина механического напряжения, при которой деформация данного материала остаётся упругой, то есть полностью исчезает после снятия нагрузки

Преде́л про́чности — механическое напряжение ,(Механическое напряжение — это мера внутренних сил, возникающих в деформируемом теле под влиянием различных факторов. Механическое напряжение в точке тела определяется как отношение внутренней силы к единице площади в данной точке рассматриваемого сечения.

Напряжения являются результатом взаимодействия частиц тела при его нагружении. Внешние силы стремятся изменить взаимное расположение частиц, а возникающие при этом напряжения препятствуют смещению частиц, ограничивая его в большинстве случаев некоторой малой величиной.

Q — механическое напряжение.F — сила, возникшая в теле при деформации.S — площадь.

) выше которого происходит разрушение материала. Согласно ГОСТу 1497-84 более корректным термином является «Временное сопротивление разрушению», то есть напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от того представления, что материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения меньшие по величине, чем временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях) разрушение материала (разделение образца на несколько частей) произойдёт через какой-то конечный промежуток времени, возможно, что и практически сразу.

 

5. Потенциальная энергия упруго деформированного тела.

Найдем работу силы упругости, изменяющейся согласно закону Гука, при перемещении тела из одной точки в другую.

Согласно определению, A = FS ∙ cos α. Сила и перемещение сонаправлены, следовательно cos α = 1.

 
 

Перемещение тела равно S = x2x1.

В первом положении на тело действует сила F1 = –kx1. Во втором положении – сила F2 = –kx2. Так сила по мере движения тела изменяется по линейному закону, можно считать, что будто бы на всем интервале движения на тело действует постоянная сила, равная среднему значению сил F1 и F2.

Таким образом: или:

Физическая величина, равная половине произведения коэффициента жесткости на квадрат абсолютной деформации, называется потенциальной энергией упруго деформированного тела:

Работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком: A = –ΔEp.

 

6. Давление в жидкостях и газах. Распределение давления в покоящихся жидкостях и газах. Закон Паскаля.

Вопреки закону Паскаля. Как известно, неподвижная жидкость в сосуде, согласно закону Паскаля, передает внешнее давление ко всем точкам жидкости без изменения. Но когда жидкость течет без трения по трубе переменной толщины, давление в разных местах трубы неодинаково. Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. (рис.2.1)
Труба, по которой течет жидкость, снабжена впаянными в нее открытыми трубками – манометрами. В узких местах трубы высота столбика жидкости меньше, чем в широких. Это значит, что в этих узких местах давление меньше. Скорость жидкости и сечение трубы. Предположим, что жидкость течет по горизонтальной трубе, сечение которой в разных местах различное (рис.2.2). Выделим мысленно несколько сечений в трубе, площади которых обозначим S1, S2, S3. За какой-то промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Вся жидкость, которая за время t походит через первое сечение, должна за это же время пройти второе сечение, и третье сечение. Заметим, что мы считаем, что жидкость данной массы повсюду имеет один объем, что она не может сжиматься (несжимаема). Но как жидкость, протекающая через первое сечение , может «успеть» за то же время протечь через значительно меньшее сечение S2? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких. Скорость и давление. Так как при переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия mgh, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы. В этом и состоит закон (принцип), открытый в 1738 г. петербургским академиком Даниилом Бернулли: Давление в жидкости, текущей в трубе, больше в тех частях, где скорость ее движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше. Закон Бернулли относится не только к жидкости, но и к газу, если газ не сжимается на столько, чтобы изменился его объем. В узких частях труб скорость течения жидкости велика, а давление мало. Можно подобрать такое маленькое сечение трубы, что давление в потоке будет меньше атмосферного.  

Давление в жидкостях

Жидкость практически не сжимаема. Давление которое воздействует на закрытую в сосуде жидкость, распространяется по всем направлениям равномерно. Давление внутри жидкости везде одинаково.

 

Давление в газах

Газы — это тоже тела, и они имеют вес. 1 м3 воздуха весит примерно 1,29 кг. Молекулы газа отталкиваются друг от друга. Поэтому газы занимают в отведенном для них пространстве весь объем и создают давление на плоскостях, ограничивающих это пространство. Между молекулами газа много свободного пространства. Поэтому газы можно легко сжимать. При сжимании газа температура его повышается.

ДАВЛЕНИЕ ВОЗДУХА

Земля окружена оболочкой из воздуха высотой около 500 км. Она называется атмосферой. С увеличением высоты она становится все тоньше. Масса воздуха, например на уровне моря, создает давление, зависящее от тяжести воздушного столба и при обычных атмосферных условиях составляющее 1 бар

ГИДРОСТАТИЧЕСКОЕ ДАВЛЕНИЕ

Если заполнять жидкостью сосуд, имеющий ряд отверстий, расположенных друг над другом, то можно установить, что эта жидкость будет вытекать из верхнего отверстия слабой струей, а из нижнего — сильной струей. Это говорит о том, что в нижней части сосуда имеет место более высокое давление, чем в верхней части. Этот прирост давления возникает потому, что с увеличивающейся высотой h столба жидкости и действующей вниз силы тяжести этого столба жидкости гидростатическое давление жидкости растет.

Под гидростатическим давлением понимают давление, создаваемое весом жидкости.

В строительстве это гидростатическое давление необходимо учитывать там, где жидкости воздействуют на сооружение, например в плотинах и при укладке свежегобетона в опалубку.

 

Действие силы на твердое тело зависит не только от модуля этой силы, но и от площади поверхности тела, на которую она действует. Взаимодействие жидкостей и газов с твердыми телами, а также взаимодействие между соседними слоями жидкости или газа тоже происходит не в отдельных точках, а на определенной поверхности их соприкосновения. Поэтому для характеристики подобных взаимодействий введено понятие давления.

Давлением р называют величину, равную отношению модуля силы давления F, действующей перпендикулярно поверхности, к площади 5 этой поверхности:

p=F/S. (5.1)

При равномерном распределении сил давления давление на всех участках поверхности одинаково и численно равно силе давления, действующей на поверхность единичной площади.

Единицу давления устанавливают из формулы (5.1). В СИ за единицу давления принято давление, вызываемое силой 1 Н, равномерно распределенной по перпендикулярной к ней поверхности площадью 1 м2. Эту единицу давления называют паскаль (Па): 1 Па=1 Н/м2.

Часто используют и следующие внесистемные единицы давления:

1. техническая атмосфера (ат): 1 ат=9,8·104 Па;

2. физическая атмосфера (атм), равная давлению, производимому столбом ртути высотой 760 мм. Как показано в § 24, 1 атм = 1,033 ат = 1,013·105 Па;

3. миллиметр ртутного столба (мм рт. ст.): 1 мм рт. ст. » 133,3 Па;

4. бар (в метеорологии используют миллибар); 1 бар=105 Па, 1 мбар=102 Па.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.