Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Ортогональные и ортонормированные базисы



Определение 3.5.Два вектора евклидового пространства называются ортогональными, если их скалярное произведение равно нулю:

.

Из определения скалярного произведения следует, что нулевой вектор ортогонален любому вектору .

Определение 3.6.Вектор называется ортогональным подпространству , если он ортогонален каждому вектору этого подпространства.

Если , то вектор ортогонален подпространству тогда и только тогда, когда .

Определение 3.7.Система векторов евклидова пространства называется ортогональной, если любые её два вектора ортогональны:

, , .

Теорема 3.5. Любая ортогональная система ненулевых векторов линейно независима.

□ Составим равенство

, (3.9)

где некоторые действительные числа. Умножив равенство (3.9) скалярно на вектор , на основании свойств скалярного произведения получим:

,

откуда

.

Так как , то равенство (3.9) примет вид

, (3.10)

Умножив равенство (3.10) скалярно на вектор , получим . И так далее. Окончательно получаем, что все коэффициенты равны нулю. Тогда по определению система ненулевых векторов линейно независима. ■

Теорема 3.6. Если ортогональная система векторов, то выполняется равенство

(3.11)

□ Вычислим скалярный квадрат вектора :

,

откуда и следует равенство (3.11). ■

Пусть далее – конечномерное ( ) евклидово пространство.

Определение 3.8.Если базис евклидова пространства представляет собой ортогональную систему векторов:

, , ,

то он называется ортогональным базисом евклидова пространства .

Определение 3.9.Вектор называется единичным, если его евклидова норма равна единице:

.

Очевидно, что любой ненулевой вектор можно преобразовать в единичный вектор следующим образом:

.

При этом говорят, что вектор пронормирован, а число называют нормирующим множителем.

Определение 3.10.Ортогональный базис евклидова пространства называется ортонормированным, если каждый вектор ( ) этого базиса – единичный, то есть

Использование ортонормированного базиса облегчает вычисление скалярного произведения в координатной форме. Пусть – ортонормированный базис и разложение векторов в этом базисе имеет вид

где координатные вектор-столбцы.

Матрица Грама для системы векторов в этом случае имеет вид

.

Тогда скалярное произведение (3.5) в ортонормированном базисе примет наиболее простой вид

. (3.12)

В ортонормированном базисе также упрощается вычисление координат вектора – они вычисляются через скалярные произведения. Если разложение вектора по ортонормированному базису имеет вид

,

то умножив обе части последнего равенства скалярно на ( ), получим

.

Тогда разложение вектора по ортонормированному базису будет иметь вид

.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.