Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Структурно-функциональная характеристика



 

Рецепторный (периферический) отделв зрительной сенсорной системе подразделяется на палочковые и колбочковые нейросенсорные клетки, наружные сегменты которых имеют соответственно палочковидную (палочки) и колбочковидную (колбочки) формы.

У человека насчитывается 6 — 7 млн. колбочек и 110—125 млн. палочек.

Место выхода зрительного нерва из сетчатки не содержит фоторецепторов и называется слепым пятном. Латерально от слепого пятна в области центральной ямки лежит участок наилучшего видения — желтое пятно, содержащее преимущественно колбочки. К периферии сетчатки число колбочек уменьшается, а число палочек возрастает, и периферия сетчатки содержит одни лишь палочки.

Различия функций колбочек и палочек лежит в основе феномена двойственности зрения. Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности, т.е. отвечают за бесцветное, или ахроматическое, зрение. Колбочки же функционируют в условиях яркой освещенности и характеризуются разной чувствительностью к спектральным свойствам света (цветное, или хроматическое, зрение). Фоторецепторы обладают очень высокой чувствительностью, что обусловлено особенностью строения рецепторов и физико-химических процессов лежащих в основе восприятия энергии светового стимула. Полагают, что фоторецепторы возбуждаются при действии на них 1 — 2 квантов света.

Палочки и колбочки состоят из двух сегментов — наружного и внутреннего, которые соединяются между собой посредством узкой реснички. Палочки и колбочки ориентированы в сетчатке радиально, а молекулы светочувствительных белков расположены в наружных сегментах, таким образом, что около 90% их светочувствительных групп лежат в плоскости дисков, входящих в состав наружных сегментов. Свет оказывает наибольшее возбуждающее действие в том случае, если направление луча совпадает с длинной осью палочки или колбочки, при этом он направлен перпендикулярно дискам их наружных сегментов.

В рецепторных клетках сетчатки происходят фотохимические процессы. Светочувствительные пигменты (сложные белковые вещества) — хромопротеиды — обесцвечиваются на свету. В палочках на мембране наружных сегментов содержится родопсин, в колбочках — йодопсин и другие пигменты.

Родопсин и йодопсин состоят из ретиналя (альдегида витамина А|) и гликопротеида (опсина). Имея сходство в фотохимических процессах, они различаются тем, что максимум поглощения находится в различных областях спектра. Палочки, содержащие родопсин, имеют максимум поглощения в области 500 нм. Среди колбочек различают три типа, которые отличаются максимумами в спектрах поглощения: одни имеют максимум в синей части спектра (430 — 470 нм), другие — в зеленой (500 — 530 нм), третьи — в красной (620 — 760 нм), что обусловлено наличием трех типов зрительных пигментов. Красный колбочковый пигмент получил название «йодопсин». Ретиналь может находиться в различных пространственных конфигурациях (изомерных формах), но только одна из них — 11-цис-изомер ретиналя — выступает в качестве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды.

Фотохимические процессы в сетчатке протекают весьма экономно. Даже при действии яркого света расщепляется только небольшая часть имеющегося в палочках родопсина (около 0,006 %).

В темноте происходит ресинтез пигментов с поглощением энергии. Йодопсин восстанавливается в 530 раз быстрее родопсина. Если в организме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению суме­речного зрения, так называемой куриной слепоте. При постоянном и равномерном освещении устанавливается равновесие между скоростью распада и скоростью ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента. Этот фотохимический феномен лежит в основе темновой адаптации.

Особое значение в фотохимических процессах имеет пигментный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного восприятия. Отростки пигментных клеток окружают светочувствительные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красного цвета, длина волны которого составляет 620 — 760 нм, рецепторный потенциал более выражен в фоторецепторах центральной части сетчатки, а синего цвета (430 — 470 нм) — в периферической.

Синаптические окончания фоторецепторов конвергируют на биполярные нейроны сетчатки. При этом фоторецепторы центральной ямки связаны только с одним биполяром.

Проводниковый отдел.Первый нейрон проводникового отдела зрительной сенсорной системы представлен биполярными клетками сетчатки (рис. 5).

Считают, что в биполярных клетках возникают потенциалы действия подобно рецепторным и горизонтальным НС. В одних биполярах на включение и выключение света возникает медленная длительная деполяризация, а в других на включение — гиперполяризация, на выключение — деполяризация.

Аксоны биполярных клеток в свою очередь конвергируют на ганглиозные клетки (второй нейрон). В результате на каждую ганглиозную клетку могут конвергировать около 140 палочек и 6 колбочек, при этом чем ближе к желтому пятну, тем меньше фоторецепторов конвергирует на одну клетку. В области желтого пятна конвергенция почти не осуществляется и количество колбочек почти равно количеству биполярных и ганглиозных клеток. Именно это объясняет высокую остроту зрения в центральных отделах сетчатки.

 

Рис. 5. Схема строения сетчатки (по данным электронной микроскопии)

 

Периферия сетчатки отличается большой чувствительностью к слабому свету. Это обусловлено, по-видимому, тем, что до 600 палочек конвергируют здесь через биполярные клетки на одну и ту же ганглиозную клетку. В результате сигналы от множества палочек суммируются и вызывают более интенсивную стимуляцию этих клеток.

В ганглиозных клетках даже при полном затемнении спонтанно генерируются серии импульсов с частотой 5 в 1 с. Эта импульсация обнаруживается при микроэлектродном исследовании одиночных зрительных волокон или одиночных ганглиозных клеток, а в темноте воспринимается как «собственный свет глаз».

В одних ганглиозных клетках учащение фоновых разрядов происходит на включение света (оn-ответ), в других — на выключение света (оff-ответ). Реакция ганглиозной клетки может быть обусловлена и спектральным составом света.

В сетчатке кроме вертикальных существуют также латеральные связи. Латеральное взаимодействие рецепторов осуществляется горизонтальными клетками. Биполярные и ганглиозные клетки взаимодействуют между собой за счет многочисленных латеральных связей, образованных коллатералями дендритов и аксонов самих клеток, а также с помощью амакриновых клеток.

Горизонтальные клетки сетчатки обеспечивают регуляцию передачи импульсов между фоторецепторами и биполярами, регуляцию цветовосприятия и адаптации глаза к различной освещенности. В течение всего периода освещения горизонтальные клетки генерируют положительный потенциал — медленную гиперполяризацию, названную S-потенциалом (от англ. slow — медленный). По характеру восприятия световых раздражений горизонтальные клетки делят на два типа: L-тип, в котором S-потенциал возникает при действии любой волны видимого света; С-тип, или «цветовой», в котором знак отклонения потенциала зависит от длины волны. Так, красный свет может вызвать их деполяризацию, а синий — гиперполяризацию. Полагают, что сигналы горизонтальных клеток передаются в электротонической форме.

Горизонтальные, а также амакриновые клетки называют тормозными нейронами, так как они обеспечивают латеральное торможение между биполярными или ганглиозными клетками.

Совокупность фоторецепторов, посылающих свои сигналы к одной ганглиозной клетке, образует ее рецептивное поле. Вблизи желтого пятна эти поля имеют диаметр 7 — 200 нм, а на периферии — 400 — 700 нм, т.е. в центре сетчатки рецептивные поля маленькие, а на периферии сетчатки они значительно больше по диаметру. Рецептивные поля сетчатки имеют округлую форму, построены концентрически, каждое из них имеет возбудительный центр и тормозную периферическую зону в виде кольца. Различают рецептивные поля с оn-центром (возбуждаются при освещении центра) и с off-центром (возбуждаются при затемнении центра). Тормозная кайма, как предполагают в настоящее время, образуется горизонтальными клетками сетчатки по механизму латерального торможения, т.е. чем сильнее возбужден центр рецеп­тивного поля, тем большее тормозное влияние он оказывает на периферию. Благодаря таким типам рецептивных полей (РП) ганглиозных клеток (с on- и оff-центрами) происходит обнаружение светлых и темных объектов в поле зрения уже на уровне сетчатки.

При наличии у животных цветового зрения выделяют цветооппонентную организацию РП ганглиозных клеток сетчатки. Эта организация состоит в том, что определенная ганглиозная клетка получает возбуждающие и тормозные сигналы от колбочек, имеющих разную спектральную чувствительность. Например, если красные колбочки оказывают возбуждающее действие на данную ганглиозную клетку, то синие колбочки ее затормаживают. Обнаружены разные комбинации возбуждающих и тормозящих входов от разных классов колбочек. Значительная часть цветооппонентных ганглиозных клеток связана со всеми тремя типами колбочек. Благодаря такой организации РП отдельные ганглиозные клетки становятся избирательными к освещению определенного спектрального состава. Так, если возбуждение возникает от красных колбочек, то возбуждение сине- и зеленочувствительных колбочек вызовет торможение этих клеток, а если ганглиозная клетка возбуждается от синечувствительных колбочек, то она тормозится от зелено- и красночувствительных и т.д.

Центр и периферия рецептивного поля имеют максимальную чувствительность в противоположных концах спектра. Так, если центр рецептивного поля отвечает изменением активности на включение красного света, то периферия аналогичной реакцией отвечает на включение синего. Ряд ганглиозных клеток сетчатки имеет так называемую дирекционную чувствительность. Она проявляется в том, что при движении стимула в одном направлении (оптимальном) ганглиозная клетка активируется, при другом направлении движения реакция отсутствует. Предполагают, что избирательность реакций этих клеток на движение в разных направлениях создается горизонтальными клетками, имеющими вытянутые отростки (теледендриты), с помощью которых направленно тормозятся ганглиозные клетки. Вследствие конвергенции и латеральных взаимодействий рецептивные поля соседних ганглиозных клеток перекрываются. Это обусловливает возможность суммации эффектов световых воздействий и возникновение взаимных тормозных отношений в сетчатке.

В сетчатке глаза, где локализуется рецепторный отдел зрительной сенсорной системы и начинается проводниковый отдел, в ответ на действие света происходят сложные электрохимические процессы, которые можно зарегистрировать в виде суммарного ответа — электроретинограммы (ЭРГ) (рис. 6).

ЭРГ отражает такие свойства светового раздражителя, как цвет, интенсивность и длительность его действия. ЭРГ может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для ее получения один электрод помещают на поверхность роговой оболочки, а другой прикладывают к коже лица вблизи глаза или на мочку уха.

На ЭРГ, зарегистрированной при освещении глаза, различают несколько характерных волн. Первая негативная волна а представляет собой небольшое по амплитуде электрическое колебание, отражающее возбуждение фоторецепторов и горизонтальных клеток. Она быстро переходит в крутонарастающую позитивную волну b, которая возникает в результате возбуждения биполярных и амакриновых клеток. После волны b наблюдается медленная элек­троположительная волна с — результат возбуждения клеток пигментного эпителия. С моментом прекращения светового раздражения связывают появление электроположительной волны d.

Показатели ЭРГ широко используют в клинике глазных болезней для диагностики и контроля лечения различных заболеваний глаза, связанных с поражением сетчатки.

Проводниковый отдел, начинающийся в сетчатке (первый нейрон — биполярный, второй нейрон — ганглиозная клетка), анатомически представлен далее зрительными нервами и после частичного перекреста их волокон — зрительными трактами. В каждом зрительном тракте содержатся нервные волокна, идущие от внутренней (носовой) поверхности сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. Волокна зрительного тракта направляются к зрительному бугру (собственно таламус), к метаталамусу (наружные коленчатые тела) и к ядрам подушки. Здесь расположены третьи нейроны зрительной сен­сорной системы. От них зрительные нервные волокна направляются в кору полушарий большого мозга.

 

Рис. 6. Электроретинограмма (по Р. Граниту):

а, b , с, d — волны ЭРГ; стрелками указаны моменты включения и выключения света

 

В наружных (или латеральных) коленчатых телах, куда приходят волокна из сетчатки, есть рецептивные поля, также имеющие округлую форму, но меньшие по размеру, чем в сетчатке. Ответы нейронов здесь носят фазический характер, но более выражены, чем в сетчатке. На уровне наружных коленчатых тел происходит процесс взаимодействия афферентных сигналов, идущих от сетчатки глаза, с эфферентными сигналами из области коркового отдела зрительной сенсорной системы. С участием ретикулярной формации здесь осуществляется взаимодействие со слуховой и другими сенсорными системами, что обеспечивает процессы избирательного зрительного внимания путем выделения наиболее существенных компонентов сенсорного сигнала.

Центральный,или корковый, отделзрительной сенсорной системы расположен в затылочной доле (поля 17, 18, 19, по Бродману, или VI, V2, V3, согласно принятой номенклатуре). Считают, что первичная проекционная область (поле 17) осуществляет спе­циализированную, но более сложную, чем в сетчатке и в наружных коленчатых телах, переработку информации. Рецептивные поля нейронов зрительной коры небольших размеров имеют вытянутые, почти прямоугольные, а не округлые формы. Наряду с этим имеются сложные и сверхсложные рецептивные поля детекторного типа. Эта особенность позволяет выделять из цельного изображения лишь отдельные части линий с различным расположением и ориентацией, при этом проявляется способность избирательно реагировать на эти фрагменты.

В каждом участке коры сконцентрированы нейроны, которые образуют колонку, проходящую по глубине через все слои вертикально, при этом происходит функциональное объединение нейронов, выполняющих сходную функцию. Разные свойства зрительных объектов (цвет, форма, движение) обрабатываются в разных частях зрительной коры большого мозга параллельно.

В зрительной коре существуют функционально различные группы клеток — простые и сложные.

Простые клетки создают рецептивное поле, которое состоит из возбудительной и тормозной зон. Определить это можно путем исследования реакции клетки на маленькое световое пятно. Структуру рецептивного поля сложной клетки установить таким путем невозможно. Эти клетки являются детекторами угла, наклона и движения линий в поле зрения.

В одной колонке могут располагаться как простые, так и сложные клетки. В IIIи IV слоях зрительной коры, где заканчиваются таламические волокна, найдены простые клетки. Сложные клетки расположены в более поверхностных слоях поля 17, в полях 18 и 19 зрительной коры простые клетки являются исключением, там расположены сложные и сверхсложные клетки.

В зрительной коре часть нейронов образует «простые» или концентрические цветооппонентные рецептивные поля (IV слой). Цветовая оппонентность РП проявляется в том, что нейрон, расположенный в центре, реагирует возбуждением на один цвет и тормозится при стимуляции другого цвета. Одни нейроны реагируют оn-ответом на красное освещение и off-ответом на зеленое, реакция других — обратная.

У нейронов с концентрическими РП помимо оппонентных отношений между цветоприемниками (колбочками) существуют антагонистические отношения между центром и периферией, т.е. имеют место РП с двойной цветооппонентностью. Например, если при воздействии на центр РП в нейроне возникает оn-ответ на красное и оff-ответ на зеленое, то у него избирательность к цвету сочетается с избирательностью к яркости соответствующего цве­та, и он не реагирует на диффузную стимуляцию светом волны любой длины (из-за оппонентных отношений между центром и периферией РП).

В простом РП различают две или три параллельно расположенные зоны, между которыми имеется двойная оппонентность: если центральная зона имеет оn-ответ на красное освещение и off-ответ на зеленое, то краевые зоны дают оff-ответ на красное и оn-ответ на зеленое.

От поля VI другой (дорзальный) канал проходит через средневисочную (медиотемпоральную — МТ) область коры. Регистрация ответов нейронов этой области показала, что они высокосе­лективны к диспаратности (неидентичности), скорости и направлению движения объектов зрительного мира, хорошо реагируют на движение объектов на текстурированном фоне. Локальное разрушение резко ухудшает способность реагировать на движущиеся объекты, но через некоторое время эта способность восстанавливается, свидетельствуя о том, что данная область не является единственной зоной, где производится анализ движущихся объектов в зрительном поле. Но наряду с этим предполагается, что информация, выделенная нейронами первичного зрительного поля 17(V1), далее передается для обработки во вторичную (поле V2) и третичную (поле V3) области зрительной коры.

Однако анализ зрительной информации не завершается в полях стриарной (зрительной) коры (V1, V2, V3). Установлено, что от поля V1 начинаются пути (каналы) к другим областям, в которых производится дальнейшая обработка зрительных сигналов.

Так, если разрушить у обезьяны поле V4, которое находится на стыке височной и теменной областей, то нарушается восприятие цвета и формы. Обработка зрительной информации о форме, как предполагают, происходит также и в основном в нижневисочной области. При разрушении этой области базисные свойства восприятия (острота зрения и восприятие света) не страдают, но выходят из строя механизмы анализа высшего уровня.

Таким образом, в зрительной сенсорной системе происходит усложнение рецептивных полей нейронов от уровня к уровню, и чем выше синаптический уровень, тем строже ограничены функции отдельных нейронов.

В настоящее время зрительную систему, начиная с ганглиозных клеток, разделяют на две функционально различные части (магна- и парвоцеллюлярные). Это деление обусловлено тем, что в сетчатке млекопитающих имеются ганглиозные клетки различных типов — X, Y, W c концентрическими рецептивными полями. Аксоны этих клеток образуют зрительные нервы.

У X-клеток РП небольшое, с хорошо выраженной тормозной каймой, скорость проведения возбуждения по их аксонам 15 — 25 м/с. У У-клеток центр РП гораздо больше, они лучше отвечают на диффузные световые стимулы. Скорость проведения составляет 35 — 50 м/с. В сетчатке X-клетки занимают центральную часть, а к периферии их плотность снижается. У-клетки распределены по сетчатке равномерно, поэтому на периферии сетчатки плотность Y-клеток выше, чем X-клеток. Особенности строения РП Х-клеток обусловливают их лучшую реакцию на медленные движения зрительного стимула, тогда как У-клетки лучше реагируют на быстро движущиеся стимулы.

В сетчатке описана также многочисленная группа W-клеток. Это самые мелкие ганглиозные клетки, скорость проведения по их аксонам 5 — 9 м/с. Клетки этой группы не однородны. Среди них выделяются клетки с концентрическими и однородными РП и клетки, чувствительные к движению стимула через рецептивное поле. При этом реакция клетки не зависит от направления движения.

Разделение на X, У и W - типы продолжается и на уровне коленчатого тела и зрительной коры. Нейроны У имеют фазический тип реакции (активация в виде короткой вспышки импульсов), их рецептивные поля в большем количестве представлены в периферических полях зрения, латентный период их реакции меньше. Такой набор свойств показывает, что они возбуждаются быстро проводящими афферентами.

Нейроны X имеют топический тип реакции (нейрон активируется в течение нескольких секунд), их РП в большем количестве представлены в центре поля зрения, а латентный период — больше.

Первичные и вторичные зоны зрительной коры (поля V1 и V2) различаются по содержанию Х- и У-нейронов. Например, в поле V1 от наружного коленчатого тела приходит афферентация как от Х-, так и от У-типов, тогда как поле V2 получает афференты только от клеток У-типа.

Передачу сигналов изучают на разных уровнях зрительной сенсорной системы, регистрируя суммарные вызванные потенциалы (ВП) у человека с помощью электродов от поверхности кожи головы в области зрительной коры (затылочная область). У животных можно одновременно исследовать вызываемую активность во всех отделах зрительной сенсорной системы.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.