Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Физиология автономной нервной системы



 

ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ Основные функции сенсорной системы   Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем. Обнаружение сигналов. Оно начинается в рецепторе — специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения. Классификация рецепторов. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли. Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов). По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные — возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные). В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы. Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку. Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки; 2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки; и 3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала). В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия — электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа. В первично-чувствующих рецепторах рецепторный и генераторный потенциалы — одно и то же. Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог — обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высокие — надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал. Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор — одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул. Различение сигналов. Важная характеристика сенсорной системы — способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог). Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю (закон Вебера). Так, усиление давления на кожу руки ощущается, если увеличить груз на 3% (к 100-граммовой гирьке надо добавить 3 г, а к 200-граммовой — 6 г). Эта зависимость выражается формулой: dl/I= const, где I — сила раздражения, dl — ее едва ощущаемый прирост (порог различения), const — постоянная величина (константа). Аналогичные соотношения получены для зрения, слуха и других органов чувств человека. Зависимость силы ощущения от силы раздражения (закон Вебера—Фехнера) выражается формулой: E=a∙logI +b, где Е — величина ощущения, I — сила раздражения, а и b — константы, различные для разных модальностей стимулов. Согласно этой формуле, ощущение увеличивается пропорционально логарифму интенсивности раздражения. Выше упоминалось о различении силы раздражителей. Пространственное различение основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Так, если два раздражителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один невозбужденный. Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения. Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа. Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала. Так, в зрительной и соматосенсорной системах на корковом уровне значительно искажаются геометрические пропорции представительства отдельных частей тела или частей поля зрения. В зрительной области коры резко расширено представительство информационно наиболее важной центральной ямки сетчатки при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной области коры также преимущественно представлены наиболее важные для тонкого различения и организации поведения зоны — кожа пальцев рук и лица («сенсорный гомункулюс»). Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней. Ограничение избыточности информации и выделение существенных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру возбужденной области. Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое. Особенности кодирования в сенсорных системах. В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит. Еще одна важная особенность нервного кодирования — множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа. В коре используется также позиционное кодирование. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации. Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду. Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов. Примером могут служить детекторы лица, найденные недавно в нижневисочной области коры обезьян (предсказанные много лет назад, они были названы «детекторы моей бабушки»). Многие детекторы формируются в онтогенезе под влиянием окружающей среды, а у части из них детекторные свойства заданы генетически. Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем. Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.   Механизмы переработки информации в сенсорной системе   Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодействия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя. Совокупность рецепторов, сигналы которых поступают на данный нейрон, называют его рецептивным полем. Рецептивные поля соседних нейронов частично перекрываются (рис. 14.1). В результате такой организации связей в сенсорной системе образуется так называемая нервная сеть. Благодаря ей повышается чувствительность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям среды. Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон активирует тормозный интернейрон. Интернейрон в свою очередь подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение). Сила этого торможения тем больше, чем сильнее возбужден первый элемент и чем ближе к нему соседняя клетка. Значительная часть операций по снижению избыточности и выделению наиболее существенных сведений о раздражителе производится латеральным торможением.

 

 

Кожный анализатор

Значение кожного анализатора.

У животных, даже обладающих самой примитивной нервной системой, имеются рецепторы, расположенные на поверхности тела и чувствительные к внешним раздражениям. У кишечнополостных они мало специализированы и реагируют на действия различных раздражителей. В процессе эволюционного развития происходила дифференциация структуры функции этих рецепторов. Соответственно дифференцировался и центральный отдел анализатора. В результате первичный анализатор общей чувствительности поверхности тела дал начало ряду специализированных анализаторов: вкусовому, обонятельному, боковой линии (у рыб), вестибулярному, слуховому и зрительному. Функциональное обособление этих анализаторов не только не снизило значения рецепторной функции кожного покрова, но, наоборот, способствовало ее специализации в определенных направлениях. Так, у многих млекопитающих большое значение приобрела волосковая чувствительность (волоски на летательных перепонках летучих мышей, «усы» ночных хищников). У человека кожный анализатор играет существенную роль в познании внешнего мира. Через рецепторы кожи человек получает представление о плотности и упругости тел, их поверхности (гладкость, шершавость и пр.), температуре и т. д. У ребенка первые представления о форме предметов, об их величине и пространственном соотношении развиваются на основе совместной деятельности нескольких анализаторов, к числу которых наряду со зрительным, двигательным и другими относится и кожный. Не менее велико значение кожного анализатора как источника рефлекторных реакций, особенно оборонительных.

Периферический отдел кожного анализатора.

Прилагая слабое электрическое раздражение к различным соседним точкам кожи, можно вызвать раздельные ощущения прикосновения, тепла, холода и боли (ощущение легкого укола). Тот же эффект дает раздражение кожи тонкой иглой или щетинкой. На основании этих наблюдений выделяют тактильные, тепловые, холодовые и болевые рецепторы кожи и соответственно четыре вида кожной чувствительности. Их раздельное существование подтверждается отсутствием определенных видов чувствительности в отдельных участках кожи и слизистых оболочек, а также частичной потерей чувствительности при воздействии на кожу некоторыми химическими веществами. Так, новокаин вызывает потерю чувствительности к холоду, а затем к боли и некоторое ее снижение к теплу, тогда как тактильная чувствительность не изменяется.

Каждый вид кожной чувствительности связан с определенными структурными особенностями рецепторных аппаратов (рис. 1). Тактильные рецепторы, воспринимающие прикосновение и давление, имеют различное строение. Одни из них, оплетающие

Рис. 1. Полусхематическое изображение некоторых рецепторных аппаратов кожи:

1 свободные нервные окончания в эпидермисе; 2 осязательные тельца Меркеля (главным образом в эпидермисе): 3 осязательное тельце Мейсснера; 4 нервное сплетение вокруг волосяной луковицы; 5 чувствительное к холоду тельце (или колба) Краузе; 6 фатерпачиниево тельце, чувствительное к давлению.

волосяную луковицу, обладают большой чувствительностью к малейшим колебаниям волоса. Другие обычно расположенные под самым эпидермисом в сосочках кожи, встречаются там, где отсутствуют волосы, а также в слизистой оболочке кончика языка. Особые рецепторы, которые находятся главным образом в подкожной клетчатке. возбуждаются не при легком прикосновении к коже, а при надавливании, -на. нее.

/ 1s'eцenmopы тепловые и холодовые (т. е. температурной чувствительности) расположены на различной глубине в собственно коже) и в верхних слоях подкожной клетчатки. Опытами с введением в кожу термоэлектрической иглы на различную глубину установлено, что холодовые рецепторы находятся ближе к поверхности, а тепловые в более глубоких слоях кожи.

Свободные нервные окончания в эпидермисе и в собственно коже, по-видимому, осуществляют болевую рецепцию. Однако достаточно сильное раздражение других рецепторов также может вызвать болевое ощущение.

Тщательное исследование кожи путем точечного раздражения отдельных ее пунктов выявило неодинаковое распределение различных видов чувствительности. В среднем, не считая волосистой части головы, приходится: болевых точек около 50 на 1 кв. см, а на всей поверхности кожи около миллиона; тактильных примерно вдвое меньше; холодовых в 4 раза меньше (12 на 1 кв. см); тепловых 12 на 1 кв. см или всего около 25 000. В коже различных областей тела количество и соотношение точек разных видов чувствительности сильно варьирует. На 1 кв. см кожи головы или ладонной стороны ногтевых фаланг кисти приходится более 100 тактильных точек, а на таком же участке кожи голени всего лишь 910. В то же время кожа лица содержит тепловых точек в 23 раза больше, а холодовых несколько меньше, чем кожа ногтевых фаланг.

Пороги раздражения и пространственного различения.

Различное в отдельных областях кожи количество чувствительных точек, а также особенности структуры и глубины залегания соответствующих рецепторов обусловливают неодинаковые пороги адекватного

раздражения разных участков кожи. Так, порог тактильного раздражения для кожи кончика носа или ладонной стороны ногтевой фаланги пальцев руки раз в 1015 меньше, чем для кожи живота и спины. Относительно редкое расположение холодовых и особенно тепловых точек приводит к тому, что температурное раздражение очень ограниченного участка кожи может совсем не вызвать соответствующего ощущения. В области голени, бедра и живота ощущение тепла иногда отсутствует даже в том случае, если площадь раздражаемого участка кожи превышает 1 кв. см.

Порог раздражения кожного анализатора зависит также от величины раздражаемой поверхности. Интенсивность температурного

ощущения тем выше, чем большая поверхность кожи (например, руки) погружена в холодную или теплую воду.

Если одновременно прикасаться к двум соседним точкам кожи, то в зависимости от расстояния между ними можно получить ощущение либо одного, либо двух раздельных прикосновений. По наименьшему расстоянию между раздражаемыми точками кожи, при котором еще ощущается

двойное прикосновение, можно судить о пороге пространственного различения тактильных раздражении (дискриминационная, 1Гли различительная, чувствительность). Для определения этого порога пользуются специальным прибором эстезиометром. Он состоит из двух ножек с очень тонким, но. слегка притупленным концом; одна из них неподвижна, а другая передвигается вдоль разлинованной шкалы и может быть закреплена на любом расстоянии от первой. Исследования показали, что порог пространственного различения примерно равен: на кончике языка 1 мм, на ладонной стороне ногтевой фаланги пальцев руки 2 мм, на кончике носа 67 мм, на лбу 2025 мм, на плече и предплечье 2540 мм, на спине и груди 4070 мм.

Явления адаптации.

Кожные рецепторы проявляют резко выраженную адаптацию к непрерывно длящимся раздражениям. Надавливание на кожу или прикосновение к ней вызывает появление в соответствующих рецепторах и афферентных волокнах потенциалов действия, следующих друг за другом с большой частотой. Однако почти тотчас же потенциалы начинают становиться все более редкими, а через несколько секунд совсем исчезают. Соответственно 'прекращается и ощущение давления или прикосновения.

Относительную адаптацию к теплу и холоду легко обнаружить, 1 если одну руку опустить в воду, охлажденную до 15°, а другую в воду, нагретую до 45°: при последующем переносе обеих рук в воду, имеющую температуру 30°, получается ясное ощущение, что одна рука находится в теплой воде, а другая в холодной. Опыты показывают, что температурные ощущения зависят не только от абсолютной температуря раздражителя, но также и от состояния кожи, т. е. ее температуры и адаптации к теплу или холоду.

Проводящие пути кожного анализатора.

Афферентные волокна, связанные с различными видами кожной чувствительности, отличаются друг от друга толщиной миэлиновой оболочки, а следовательно, и скоростью проведения импульсов. По волокнам безмякотным и обладающим тонкой миэлиновой оболочкой поступают импульсы, связанные с температурной, болевой, а отчасти и тактильной чувствительностью. Волокна второго нейрона проводящих путей перекрещиваются, и направляются к ядрам багров промежуточного мозга, где находятся тела третьего нейрона, проводящего импульсы к коре больших полушарий.

Через боковые ответвления (коллатерали) нервных волокон и через промежуточные (вставочные) нейроны импульсы, идущие от кожных рецепторов, могут переходить в спинном мозгу на эфферентные пути. Часть волокон направляется к бугоркам четверохолмия, при участии которых осуществляются такие рефлекторные реакции на раздражение кожи, как поворот головы, движение глаз, настораживание и т. п.

Корковый отдел кожного анализатора.

У человека ядро коркового отдела кожного анализатора расположено в постцентральной области коры больших полушарий. Основная масса афферентных волокон направляется к полю 5, которое находится в глубине центральной борозды, а также к соседним полям 1 и 2. Уже в спинном мозгу пучки волокон, несущих импульсы от разных участков кожи, занимают строго определенное положение, а, дойдя до латерального ядра бугров промежуточного мозга, заканчиваются около различных клеточных групп, каждая из которых направляет свои аксоны к определенным участкам коры преимущественно противоположного полушария. В результате ядро коркового отдела кожного анализатора можно рассматривать как своеобразную проекцию кожи.

Исследование мозга людей, у которых при жизни отсутствовала чувствительность отдельных участков кожи, а также опыты с электрическим раздражением коры во время мозговых операций позволили установить корковую локализацию кожной чувствительности у человека. В верхнем участке постцентральной" извилины проецируется кожа нижних конечностей, а в среднем и нижнем участках кожа верхних конечностей я головы. Величина корковой проекции различных областей кожи пропорциональна их богатству рецепторами, что совпадает и с функциональной значимостью отдельных участков кожного анализатора. Так, проекция кожи туловища занимает относительно малое Пространство; большой участок занимает проекция стопы, а еще больший кисти. Особенно велики размеры проекции большого пальца и губ. Следует, однако, отметить, что участки коры, связанные с определенными областями кожи, в сильной степени перекрывают друг друга.

Повреждение Постцентральной извилины, и особенно поля 3, влечет за собой резкое расстройство анализа и синтеза кожных раздражении. Однако даже при полном разрушении постцентральной области коры (например, при удалении мозговой опухоли) происходит постепенное восстановление грубой чувствительности к давлению, теплу, холоду и боли. Это объясняется наличием в других участках коры рассеянных элементов кожного анализатора. Особенно широко рассеяны те элементы, раздражение которых вызывает болевые ощущения. Своеобразное нарушение наблюдается при поражениях верхней теменной области (поля 5 и 7): точно локализуя раздражаемый участок кожи, человек не может определить характер раздражения, а при ощупывании не различает знакомые предметы, т. е. не узнает их.

Анализ и синтез кожных раздражении. В опыте на спинномозговом препарате животного можно обнаружить элементарный пространственный анализ, проявляющийся в различных рефлекторных двигательных реакциях в зависимости от места раздражения. Наличие четырех основных видов кожной чувствительности, связанных с различными рецепторами, создает возможность качественного периферического анализа раздражении.

В известной мере анализ, а также и синтез может продолжаться и .в проводящих путях, особенно в соответствующих ядрах бугров промежуточного мозга. Здесь взаимодействие импульсов, идущих от разных участков кожи и от разных ее рецепторов, может определять как ответную реакцию, осуществляемую через подкорковые двигательные ядра, так и судьбу тех импульсов, которые направляются в кору больших полушарий. В буграх же происходит взаимодействие импульсов, относящихся к разным анализаторам, что, по-видимому, служит источником тех неясных, смутных ощущений общего состояния организма, которые принято называть низшими эмоциями.

Высший анализ и синтез раздражении, связанный с образованием положительных и отрицательных условных рефлексов, происходит в корковом отделе анализатора. Здесь возникают связи между определенными комбинациями очагов возбуждения в кожном анализаторе и теми очагами, которые появляются в коре под влиянием раздражении, падающих на другие анализаторы. Опыты на собаках показали, что можно выработать условные рефлексы на самые различные тактильные, температурные и болевые раздражения, сочетая их с действием тех или иных безусловных раздражителей. Очень сходные раздражения, как правило, легко могут быть отдифференцированы. Так, удается выработать дифференцировку на тактильные раздражители, приложенные к двум соседним участкам кожи, а также на различную силу или частоту раздражении.

Тонкий анализ и синтез раздражении приобретает особое значение в тех случаях, когда выбывают из строя другие анализаторы. Высокого совершенства аналитико-синтетическая деятельность

кожного анализатора достигает у людей, потерявших зрение и слух. Примером может служить слепоглухонемая Ольга Скороходова, опубликовавшая в 1947 году книгу под названием «Как я воспринимаю окружающий мир». Малейшие колебания температуры, еле заметное движение воздуха, ничтожные детали ощупываемого предмета все это становилось источником определенных условных связей, позволяющих легко и быстро ориентироваться в окружающих явлениях.

Взаимодействие различных видов кожной чувствительности.

Обычно раздражения, воспринимаемые кожей, носят комплексный характер, ибо действуют на разные виды рецепторов, причем получается единое обобщенное ощущение, характер которого зависит от степени вовлечения в реакцию различных видов рецепторов. Приложение к коже холодного или теплого предмета в первый момент вызывает отчетливое ощущение прикосновения, к которому быстро присоединяется и становится доминирующим ощущение холода или тепла. Объясняется это тем, что импульсы от тактильных рецепторов быстрее достигают центральной нервной системы, ибо проходят по толстым мякотным волокнам, тогда как от тепловых и холодовых рецепторов импульсы идут по безмякотным или тонким мякотным волокнам. Следовательно, прежде всего очаг возбуждения возникает в тех корковых клетках, которые получают импульсы от тактильных рецепторов. Последующее появление второго очага возбуждения в клетках, получающих импульсы от тепловых или холодовых рецепторов, вызывает в силу отрицательной индукции понижение возбудимости клеток, воспринимающих тактильное раздражение.

Сила очагов возбуждения, возникающих в коре под влиянием импульсов от тактильных и болевых рецепторов, зависит от характера и интенсивности раздражения, причем более сильный (доминирующий) очаг вследствие отрицательной индукции способен понижать возбудимость слабого очага. Этим объясняется ослабление или отсутствие тактильных ощущений при сильном болевом раздражении, или, наоборот, уменьшение болевых ощущений, если потирать рукой ушибленное место, прикладывать к нему холодный или теплый предмет. Болевые ощущения могут совсем отсутствовать, когда одновременно сильно раздражаются тактильные и относительно слабо болевые рецепторы. Аналогичный корковый механизм лежит в основе подавления болевых ощущений путем интенсивного сжимания рук; в этом случае сильный очаг возбуждения возникает не только в кожном, но и в двигательном анализаторе.

Значение коркового взаимодействия импульсов, приходящих от различных рецепторов кожи, особенно отчетливо выявляется при некоторых заболеваниях центральной нервной системы. Поражение бугров промежуточного мозга может резко нарушить тактильную чувствительность, тогда как болевая и температурная сохраняются. Однако болевые и температурные ощущения изменяются: они становятся очень резкими и плохо локализуются. Например, укол в области плеча воспринимается как резкое болевое раздражение всей или большей части конечности. Это объясняется тем, что возбуждение, возникающее в коре под влиянием болевого раздражения, легко иррадиирует, чему способствует отсутствие отрицательной индукции со стороны корковых центров тактильной чувствительности.

Сходные явления отмечал английский невропатолог Хэд. Он перерезал у себя веточку кожного нерва, тотчас же сшил ее концы и затем в продолжение длительного времени наблюдал за восстановлением кожной чувствительности по мере того, как происходила регенерация нервных волокон. Прежде всего начала восстанавливаться болевая и грубая температурная чувствительность. В этот период легкий угол большого пальца иглой и даже простое прикосновение к коже вызывали резкое и мучительное болевое ощущение. Приложение теплового раздражителя (+45° и выше), а также холодового (+10° и ниже) вызывало столь же резкие и очень неприятные температурные ощущения. Все эти ощущения носили разлитой характер: определить место приложения раздражителя не удавалось. Значительно позднее стала восстанавливаться чувствительность тактильная и тонкая температурная. Вскоре болевые ощущения приобрели обычный, нормальный характер, и опять появилась способность точно локализовать наносимые раздражения.

На основании своих наблюдений Хэд пришел к выводу о существовании двух видов чувствительности: филогенетически древней, примитивной и позднее появившейся тонкой. Однако этот вывод требует дальнейших подтверждений, так как некоторые факты ему противоречат. Описанные Хэдом наблюдения следует рассматривать как лишнее подтверждение коркового взаимодействия импульсов, приходящих от различных рецепторов кожи, а также значения тактильной чувствительности для точной локализации наносимых на кожу раздражении.

Факторы, определяющие чувствительность кожного анализатора. Существенное влияние на чувствительность кожного анализатора оказывают температура кожи и состояние кровообращения в ней (например, сужение или расширение кожных сосудов). Известно, что при повышении температуры кожи ее чувствительность к тактильному и болевому раздражениям повышается, а при охлаждении понижается. Изменение температуры влияет и на порог пространственного различения.

Чувствительность к теплу и холоду, далеко не одинаковая у отдельных людей, в сильной степени зависит от адаптации кожи к этим раздражителям. Как правило, она особенно велика при температуре кожи 2830°. Наблюдения над чувствительностью кожи руки показали, что при этой температуре разностный порог ощущения нередко может достигать 0,1°. Чувствительность понижается к тепловым раздражителям при адаптации- кожи к низкой температуре, а к холодовым при адаптации к высокой температуре.

Изменения кожной чувствительности зависят и от состояния центрального отдела анализатора. Во-первых, центральная нервная система, реагируя на поступающие с периферии импульсы, оказывает рефлекторные влияния на кожу: изменяет ее функциональное состояние, а тем самым и чувствительность. Во-вторых, меняется возбудимость корковых клеток кожного анализатора; она повышается, если афферентные импульсы достаточно интенсивны и особенно при образовании жизненно важных условных связей. Этим объясняется повышение кожной чувствительности под влиянием профессиональных навыков, а также при нарушении функции других анализаторов, что имеет место у слепых и у слепоглухонемых. Слабые тактильные и температурные раздражения, в особенности длительно и часто повторяющиеся, наоборот, понижают возбудимость корковых клеток и приводят к развитию в них процесса торможения. Методом условных рефлексов показано, что такие раздражения легко вызывают иррадиацию торможения.

Изменение возбудимости коркового отдела анализатора может происходить и под влиянием сдвигов функционального состояния корковых отделов других анализаторов. Установлено, что порог тактильных раздражении, а также порог их пространственного различения в условиях освещения ниже (т. е. чувствительность выше), чем в темноте. Порог тактильных раздражении понижается и в том случае, если усиливается приток импульсов с рецепторов двигательного анализатора (например, при нанесении болевого раздражения

путем внутримышечной инъекции солевого раствора). Повышение кожной чувствительности при раздражении центрального отдела зрительного и двигательного анализаторов объясняется иррадиацией возбуждения на корковые клетки кожного анализатора.

Порог раздражения может, наоборот, повышаться вследствие отрицательной индукции, возникающей под влиянием сильного очага возбуждения в корковом отделе другого анализатора. Так, значительное мышечное напряжение резко повышает порог болевых и тактильных раздражении, т. е. понижает чувствительность к ним. Аналогичное влияние, особенно на порог пространственного различения тактильных раздражении, оказывает утомление. Надо полагать, что и в этом снижении кожной чувствительности существенную роль играют корковые процессы.

Кожный анализатор как источник рефлекторных реакций.

Рефлекторные реакции возникают при раздражении рецепторов любого анализатора. Так, вкусовые и запаховые раздражители вызывают рефлексы со стороны органов пищеварения; в ответ на звуковое или световое раздражение может появиться ориентировочный рефлекс и т. д. Не составляет исключения и кожный анализатор. Сосудистые, двигательные и другие рефлексы легко возникают в ответ на различные раздражения кожи. Особое значение приобретают рефлексы на болевое раздражение.

Сильное болевое ощущение возникает при действии на кожу любых раздражителей, если они достигают большой интенсивности и оказывают повреждающее действие. Иными словами, болевыми раздражителями могут оказаться самые разнообразные физические и химические агенты, будь то тепло или холод, механическое воздействие (например, давление или растяжение), химические вещества и т. д. Следовательно, для рецепции боли адекватна не природа раздражителя, а интенсивность его воздействия на кожу.

Если в результате образования соответствующих условных рефлексов звуковые, зрительные и другие раздражители могут быть сигналами предстоящего повреждения организма, то болевое раздражение сигнализирует уже наступившее повреждение. В ответ на такой сигнал возникает оборонительная безусловнорефлекторная реакция; она направлена на устранение раздражителя или на удаление от него.

Оборонительная реакция на повреждающее болевое раздражение кожи не ограничивается тем или иным ответным двигательным актом. Она проявляется в значительных изменениях функций различных органов. Еще в 70-х годах прошлого века Павлов обнаружил, что в условиях острого опыта болевое раздражение вызывает резкое торможение секреторной функции пищеварительных желез. В дальнейшем было установлено, что под влиянием боли наступают рефлекторные изменения кровообращения, повышается свертываемость крови и увеличивается содержание в ней адреналина и сахара, нарушается функция почек и т. д. Иногда при сильном и внезапном раздражении наблюдаются остановка сердца и другие сильные изменения жизненно важных функций, в результате чего наступает гибель организма.

Таким образом, рефлекс на болевое раздражение представляет собой целостную реакцию всего организма. Характер этой реакции зависит как от состояния самого организма, так и от интенсивности повреждающего действия. Чаще всего болевое раздражение повышает возбудимость нервной системы и вызывает такие координированные реакции различных органов, которые облегчают протекание защитных функций организма.

 

Слуховой анализатор

Рецепция звуковых раздражении

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания большей частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа улитка.

Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных это среднее ухо, или барабанная полость, которая образовалась за счет первой жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, «облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

Функция звукопроводящего аппарата уха.

Барабанная полость сообщается с наружным воздухом через особый канал слуховую, или евстахиеву, трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосферного давления, например при спуске в глубокую шахту, при подъеме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы способствует выравниванию давления, а потому при

 

изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

 

Литература

 

 

  1. Хандверкер Х. Глава 8. Общая сенсорная физиология // Физиология человека: в3-х томах. Т.1. Пер. с англ. = Human Physiology. Edited by R.F. Schmidt and G. Thews. 2nd, completely revised edition / под ред. Р. Шмидта и Г. Тевса (перевод под ред. акад. П.Г. Костюка) — М.: Мир, 1996. — С. 178-196. — 323 с. — 10 000 экз. — ISBN 5-03-002545-6.
  2. 1 2 Островский М.А., Шевелев И.А. Глава 14. Сенсорные системы // Физиология человека. Учебник (В двух томах. Т. II) / под ред. В.М. Покровского, Г.Ф. Коротько — М. С. 201-259. — 368 с. — (Учеб. лит. для студентов мед. вузов). — 10 000 экз. — ISBN 5-225-02693-1.
  3. Kolb & Whishaw: Fundamentals of Human Neuropsychology (2003)
  4. Альтман Я.А. Глава 5. Пространственный слух // Слуховая система / ред. Я.А. Альтман — Л.: Наука, 1990. — С. 366-448. — 620 с. — (основы современной физиологии). — 1800 экз. — ISBN 5-02-025643-9.

 

 

Содержание

 

1.Понятие сенсорной системы.

2.Сенсорные стимулы.

3.Сенсорная система человека

4.Общая физиология сенсорных систем.

5.Основные функции сенсорных систем.

6.Механизмы переработки информации в сенсорных системах.

7.Кожный анализатор.

8.Слуховой анализатор.

 

Казанский (Приволжский) Федеральный Университет

Институт механики и математики

 

 

РЕФЕРАТ

по возрастной анатомии

 

Выполнила:

студентка І курса, гр.1101

Валитова Юлия.

Проверила:

Русинова С.И.

 

 

Казань, 2011г.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.