Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Полный одноразрядный двоичный сумматор



Он (рис. 4) имеет три входа: a, b для двух слагаемых и p для переноса из предыдущего (более младшего) разряда и два выхода: S сумма, P перенос в следующий (более старший) разряд. Обозначением полного двоичного сумматора служат буквы SM. Работу его отражает таблица истинности 3 (табл. 3).

Рис. 4 Таблица 3
№ наб. a b p P S

 

Отметим два момента. Первый: в табл. 2 и 3 выходные сигналы P и S не случайно расположены именно в такой последовательности. Это подчеркивает, что PS рассматривается как двухразрядное двоичное число, например, 1 + 1 = 210 = 102 , то есть P = 1, а S = 0 или 1 + 1 + 1 = 310 = 112, то есть P = 1, а S = 1. Второй: выходные сигналы P и S полного двоичного сумматора относятся к классу самодвойственных функций алгебры логики. Самодвойственными называют функции, инвертирующие свое значение при инвертировании всех переменных, от которых они зависят. Обратите внимание, что P и S для четвертьсумматора и полусумматора не являются самодвойственными функциями! Преимущества, вытекающие из этого свойства полного двоичного сумматора, будут рассмотрены при анализе возможностей ИС типа 155ИМ1.

Уравнения, описывающие работу полного двоичного сумматора, представленные в совершенной дизъюнктивной нормальной форме (СДНФ), имеют вид:

(6)

Уравнение для переноса может быть минимизировано:

P = ab + ap + bp. (7)

При практическом проектированиии сумматора уравнения (6) и (7) могут быть преобразованы к виду, удобному для реализации на заданных логических элементах с некоторыми ограничениями (по числу логических входов и др.) и удовлетворяющему предъявляемым к сумматору требованиям по быстродействию.

Например, преобразуем уравнения (6) следующим образом:

(8)

Из выражений (8) следует, что полный двоичный сумматор может быть реализован на двух полусумматорах и одном двухвходовом элементе ИЛИ. Соответствующая схема приведена на рис. 5.

Рис. 5

Из выражения (8) для S также следует:

S = a Å b Å p. (9)

Примечание. Так как операция Е в выражении (9) коммутативна (переменные можно менять местами), то следует, что три входа полного двоичного сумматора абсолютно равноправны и на любой из них можно подавать любую входную переменную. Это полезно помнить, разводя печатные платы, на которых установлены ИС сумматоров.

К настоящему времени разработано большое число схем сумматоров. Доказано (нашим отечественным ученым Вайнштейном), что при использовании только одного инвертора нельзя реализовать полный двоичный сумматор со сложностью Pкв < 16, а при двух инверторах Pкв < 14, где Pкв вес по Квайну, используемый как оценка сложности любых комбинационных схем. Pкв это общее число всех входов всех логических элементов схемы без учета инверторов.

Рис. 6

Покажем, используя два метода, как была получена рациональная (с использованием только одного инвертора) схема полного двоичного сумматора, явившаяся основой схем ИС сумматоров типа 7480, 155ИМ1 и др.

Первый метод основан на использовании значения выходного переноса P как вспомогательной переменной при определении выходной суммы S (табл. 4). В табл. 4 при наборах переменных, являющихся нереальными (например, единичное значение переноса при нулевых значениях всех входных переменных), поставлены безразличные значения (крестик) для функции S, которые можно доопределять произвольным образом.

Таблица 4

№ наб. a b p P S
x
x
x
x
x
x
x
x

Из карты Карно для функции S (рис. 6) следует:
S = abp + Pa + Pb + Pp = = abp + P(a + b + p). (10)

Второй метод основан на применении диаграмм Венна. На рис. 7а показана диаграмма Венна для трех переменных а, b, p; области, ограниченные окружностями, соответствуют переменным а, b, p, а области, обозначенные цифрами от 0 до 7 соответствующим конъюнкциям (например, 5 = abp). Область, заштрихованная на рис. 7б, очевидно, соответствует функции P = ab + ap + bp. Функция S представлена заштрихованной областью на рис. 7в. Ее можно представить суммой произведения функции a + b + p (рис. 7г) на функцию ab + ap + bp (рис. 7д) и функции abp (рис. 7е). Очевидно, что в этом случае получается выражение для S, аналогичное уравнению (10).

Рис. 7

Схема сумматора, реализованного по уравнениям (7) и (10), приведена на рис. 8а. В данной схеме используются многовходовые логические элементы И и ИЛИ. Если использовать только двухвходовые элементы, то получаются схемы, приведенные на рис. 8б,в.

Рис. 8


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.