Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СВЕТОТЕХНИЧЕСКИЕ УСТАНОВКИ И СИСТЕМЫ ИХ ПИТАНИЯ



НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

АЛМАТИНСКИЙ ИНСТИТУТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра электроснабжения промышленных предприятий

 

СВЕТОТЕХНИЧЕСКИЕ УСТАНОВКИ И СИСТЕМЫ ИХ ПИТАНИЯ

 

Методические указания к выполнению расчетно-графической работы

по курсу «Светотехнические установки и системы их питания»

для специальности 210440 - Электроснабжение (по отраслям)

 

 

Алматы 2006


СОСТАВИТЕЛИ: Т.А. Туканова, О.П. Живаева: Светотехнические установки и системы их питания. Методические указания к выполнению расчетно-графической работы (для студентов очной формы обучения специальности 210440 - Электроснабжение (по отраслям)) – Алматы: АИЭС, 2006.- 52 с.

 

Методические указания на выполнение расчетно-графической работы соответствуют курсу «Светотехнические установки и системы их питания» и включают методические указания к выполнению расчетно-графической работы, технические данные и перечень рекомендуемой литературы

Ил. 17, табл.20, библиогр. - 24 назв.

 

Рецензент: д-р. техн. наук, проф. Мукажанов В.Н.

 

 

Печатается по плану издания Алматинского института энергетики и связи на 2005 год.

 

 

 
 
 

 

© Алматинский институт энергетики и связи, 2006г.

 

 

Содержание

 

Введение
1 Задание к расчетно-графической работе
2 Светотехнический расчет
2.1 Выбор нормируемых параметров
2.2 Виды освещения
2.3 Краткая характеристика источников света, применяемых для освещения производственных объектов  
2.4 Выбор источников света
2.5 Выбор коэффициента запаса
2.6 Выбор светильников по светотехническим характеристикам и конструктивному исполнению  
2.7 Методика светотехнического расчета осветительных установок
3 Электрический расчет осветительной установки
Приложение А
Приложение Б
Приложение В
Список литературы

 

 


Введение

 

Задачей изучения курса является освоение студентами знаний по вопросам нормирования светотехнических установок, расчета и проектирования светотехнической и электрической частей осветительной установки.

При изучении курса используются знания, полученные студентами в процессе их физико-математической и общеинженерной подготовки, а также подготовки по профилирующим и специализирующим дисциплинам.

Проектирование осветительных установок (ОУ) подчиняется общим положениям, принятым в инструкции СНиП РК 2.04.-05.2002 (Естественное и искусственное освещение. Государственные нормативы в области архитектуры, градостроительства и строительства).

Проектно-сметная документация разрабатывается в одну или две стадии. В одну стадию выполняется рабочий проект (РП), в две стадии - проект (П) и рабочая документация (РД). Для предприятий, зданий и сооружений, строительство которых будет осуществляться по типовым и повторно применяемым проектам, а также для технически несложных объектов проектирование ведется в одну стадию - разрабатывается РП со сводным сметным расчетом. Для других объектов строительства, в том числе крупных и сложных, ведется двухстадийное проектирование - выполняется П со сводным сметным расчетом стоимости и РД со сметами.

Проектирование освещения состоит из двух частей - светотехнической и электрической.

В светотехнической части РП производится выбор значений освещенности и показателей качества освещения, систем, видов и способов освещения, типов источников света и осветительного прибора, выполняются светотехнические расчеты, в результате которых выбираются тип, мощность и расположение осветительных приборов.

В электрической части РП выбираются источники питания, решаются (при необходимости) вопросы компенсации реактивной мощности для установок с ртутными лампами высокого давления (РЛВД), намечаются способы управления освещением, выбираются типы магистральных и групповых щитков и другого электрооборудования, выбираются способы доступа к осветительным установкам.

Необходимые параметры ОУ, обеспечивающие требуемые по нормам количественные и качественные характеристики, во многих случаях определяются не сразу, а путем последовательного приближения к ним. Последовательность расчета варианта ОУ представлена на рисунке 1.

В практике проектирования приходится рассматривать несколько вариантов устройства ОУ, отличающихся друг от друга по отдельным характеристикам или их совокупности: различные системы освещения, различные типы ИС и светильников, различная высота установки светильников. Для повышения точности и быстроты расчетов ОУ необходимо применять ЭВМ.

Из всех рассмотренных вариантов выбирается вариант с минимальными затратами.

 

 

Рисунок 1 - Последовательность расчета варианта ОУ


1 Задание к расчетно-графической работе

 

Исходными данными для выполнения расчетно-графической работы являются размеры помещений (приложение Б) и план цеха (приложение В), согласно варианта. Номер варианта задается преподавателем. Для помещений: лаборатория, инструментальная, начальник цеха, комната отдыха, мастера, кладовая, гардероб, душевая и склад – принимается высота Н = 4 метра.

Для заданного цеха произвести светотехнический и электротехнический расчеты электроосветительной установки. Выполнить следующие мероприятия:

- выбрать тип источника света;

- выбрать тип и систему освещения;

- выбрать освещенность и коэффициент запаса;

- выбрать тип светильника;

- произвести размещение светильников;

- рассчитать осветительную установку по методу коэффициента использования светового потока;

- проверить расчет освещения по методу удельной мощности;

- проверить расчет освещения по точечному методу;

- занести результаты расчета освещения для каждого помещения в светотехническую ведомость (приложение А);

- выбрать тип и место установки щитков, марку и способы прокладки проводников;

- рассчитать защиту и произвести выбор защитных аппаратов осветительной сети;

- начертить план цеха с осветительной сетью с указанием: уровня нормируемой освещенности; типа светильника и щитка; мощности лампы; марки проводников.

 

2 Светотехнический расчет

 

2.1 Выбор нормируемых параметров

 

Выбор требуемых параметров по нормам искусственного освещения и параметров качества освещения производится, как правило, на основании отраслевых норм искусственного освещения, разработанных для многих отраслей промышленности, видов производства. При отсутствии отраслевых норм нормирование осуществляется по СНиП [1]. Для определения величины освещенности в зависимости от вышеуказанных параметров требуется тщательное изучение технологического процесса, происходящего в освещаемом помещении.

Рекомендуемые нормируемые показатели освещения общепромышленных помещений и сооружений приводятся в приложении И СНиП [1]. Рекомендуемые нормируемые показатели освещения основных помещений общественных, жилых, вспомогательных зданий, а также сопутствующих производственных помещений для предприятий бытового обслуживания приводятся в приложении К СНиП [1].

 

2.2 Виды освещения

 

Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное. Рабочее освещение обеспечивает необходимые условия при нормальном режиме работы ОУ, оно обязательно во всех помещениях и на открытых пространствах.Охранное освещение - разновидность рабочего освещения, устанавливаемого по линии охраняемых границ территорий промышленных предприятий. Аварийное освещение разделяется на освещение безопасности и эвакуационное.

Освещение безопасностиобеспечивает минимально необходимые осветительные условия для продолжения работы при временном погасании рабочего освещения в помещениях и на открытых пространствах в случаях, когда отсутствие искусственного освещения может вызвать тяжелые последствия для людей, производственных процессов, нарушить нормальное функционирование жизненных центров предприятия и узлов обслуживания массовых потребителей. Согласно СНиП [1], освещение безопасности должно создавать освещенность не ниже 5 % нормируемой освещенности, но не менее 2 лк в помещениях и 1 лк снаружи. Освещенность более 30 лк при разрядных лампах и более 10 лк при лампах накаливания разрешается создавать при наличии соответствующих обоснований.

Эвакуационное освещениеслужит для безопасной эвакуации людей из помещений и с открытых пространств при аварийном погасании рабочего освещения. Эвакуационное освещение должно создавать освещенность не менее 0,5 лк в помещениях и 0,2 лк снаружи.

Для освещения безопасности и эвакуационного освещения могут использоваться лампы накаливания (в том числе галогенные) и люминесцентные лампы, причем последние только в помещениях с температурой воздуха не ниже +5°С при питании их переменным током и напряжении не ниже 90 % номинального. Лампы типов ДРЛ, ДРИ и ДНаТ используют только как дополнительно присоединяемые к группам аварийного освещения в целях усиления освещенности сверхнормированной для аварийного освещения.

Системы освещения. Для помещений всех назначений применяются системы общего или комбинированного освещения. В отраслевых нормах искусственного освещения обычно указывается рекомендуемая система освещения. Система комбинированного освещения применяется для производственных помещений, где выполняются зрительные работы I, II, Ш, IVа, IVб, IVв, Va разделов [1]. Ее рекомендуется применять: а) для работы I, Па и Пб разрядов во всех случаях; б) для работ IIв, IIг, III и IV разрядов в тех случаях, когда зрительная работа отличается специфическими требованиями к освещению; в) для работ IIв, IIг, II, IVa и IVб разрядов в случае технико-экономической целесообразности, когда имеется затемнение рабочей зоны конструктивными элементами производственного оборудования.

Общее освещениеможет быть равномерным и локализованным. При локализованном освещении световой поток перераспределяется по помещению неравномерно с учетом расположения освещаемых поверхностей. Выбор между равномерным и локализованным освещением производится с учетом особенностей производственного процесса и размещения технологического оборудования.

Многие виды технологического оборудования поставляются с устройствами местного освещения, и тогда в проектах освещения необходимо предусматривать только подводку для электрического питания этих устройств, если таковая не учитывается в проекте силового электрооборудования. Применение одного местного освещения в осветительных установках не допускается. В административно-бытовых и вспомогательных помещениях, как правило, предусматривается общее равномерное освещение. В больших производственных и общественных зданиях из общего освещения (рабочего, аварийного и эвакуационного) при необходимости могут выделяться осветительные приборы дежурного освещения, используемого при уборке помещения и его охраны.

2.3 Краткая характеристика источников света, применяемых для освещения производственных объектов

 

По принципу действия все искусственные источники света делятся на две группы: температурные и разрядные. К температурным источникам света относятся все разновидности ламп накаливания, свечение которых осуществляется за счет нагрева электрическим током вольфрамовой нити. В разрядных лампах свечение происходит за счет возбуждения плазмы до заданных температур. Плазма создается в среде паров или газов веществ, обладающих низкой энергией выхода.

В температурных источниках света (лампах накаливания) вольфрамовая нить располагается внутри стеклянной колбы, заполненной смесью газов азота с аргоном или азота с криптоном. Максимальная температура вольфрама, допускаемая по условиям его механической прочности, 2800 К, ограничивает световую отдачу ламп накаливания на уровне до 10 лм/Вт. При этом световой КПД ламп накаливания достигает 2-3%, т.е. большая часть излучения попадает в инфракрасную область оптического диапазона и всего лишь 2-3% – в видимую часть спектра (λ =320÷780 нм). Основная серия ламп общего назначения выпускается в диапазоне мощностей 15-1500 Вт на напряжение 127 и 220 В (на 135 и 235 В для сетей, где возможно повышенное напряжение).

Увеличение светового КПД возможно за счет повышения температуры вольфрама. Однако при возрастании температуры нити усиливается вынос молекул вольфрама из поверхности нити, при этом резко сокращается срок ее службы. Для ограничения миграции молекул вольфрама, вылетевших с поверхности нити до колбы, проводят моно-, би- и три-спирализацию нити и заполняют колбу лампы указанными выше газовыми смесями. Эти меры позволяют получить лампы накаливания со средним сроком службы τ ≈ 1000 часов. Увеличить срок службы ламп накаливания до τ = 2000 часов позволяет использование йодного цикла в галогенных лампах.

Лампа накаливания с йодным циклом представляет собой кварцевую трубку небольшого диаметра, в торцы которой с помощью держателей впаяна вольфрамовая спираль. В последнее время стали выпускать галогенные лампы с концентрированным телом накала и выводами электродов с одной стороны. Кроме обычных наполнителей, внутрь такой лампы вводится дозированное количество йода. Молекулы вольфрама мигрируют к поверхности колбы, где образуют соединение WJ2, которое, перемещаясь внутри трубки, частично попадает на спираль. При высокой температуре происходит распад молекулы WJ2 на вольфрам и йод, при этом вольфрам частично возвращается на спираль, что замедляет процесс испарения вольфрама и увеличивает срок службы лампы.

В маркировке ламп, выпускаемых в СНГ, принято: В - вакуумные, Г – газонаполненные, Кч - лампы с криптоновым наполнением, Б - биспиральные, МТ - с матированной колбой, МО - местного освещения. В таблице 1 приведены основные характеристики ламп накаливания.

 

Таблица 1 - Лампы накаливания общего назначения

Мощность, Вт Лампы 130 В Лампы 220 В Размеры, мм Цоколь
Тип Световой поток Тип Световой поток Диаметр колбы Длина лампы
С нормальной световой отдачей
В 125-135-15 В 215-225-25 Е
В 125-135-25 В 215-225-25 27/27
В 125-135-40 В 215-225-40  
В 125-135-60 В 215-225-60  
- - В 215-225-75  
В 125-135-100 В 215-225-100  
Г 125-135-150 В 215-225-150 Е
Г 125-135-200 В 215-225-200 166,5 27/30
Г 125-135-300 В 215-225-300  
Г 125-135-500 В 215-225-500 Е
- - В 215-225-750 27/45
Г 125-135-1000 В 215-225-1000  
С повышенной световой отдачей (криптоновые)
БК 125-135-40 БК 215-225-40  
БК 125-135-60 БК 215-225-60 Е
- - БК 215-225-75 27/27
БК 125-135-100 БК 215-225-100  

 

Маркировка галогенных ламп включает: первая буква - материал колбы (кварц), вторая буква - вид галогенной добавки (И - чистый йод, Г - галогенные смеси), третья буква - область применения (О - облучательная), М - малогабаритная, К - концентрированное тело накала. Первая группа цифр означает мощность в ваттах, последняя - номер разборки. В основном применяют трубчатые лампы типа КГ мощностью 1; 1,5; 2; 2,5; 5 кВт на напряжении 220 В.

Техническое совершенствование ламп накаливания направлено на увеличение световой отдачи, срока службы ламп и создание разнообразных форм и цветов. В настоящее время на рынке Казахстана широко представлена продукция всемирно известных фирм, производящих источники света: Philips, Osram, General Electric и др. В таблице 2 приведены основные характеристики некоторых ламп накаливания фирмы Philips с белой и прозрачной колбой.

 

Таблица 2 - Лампы накаливания фирмы Philips

Тип Мощность, Вт Напряжение, В Световой поток, лм Цвет колбы Цоколь
PHILIPS
STANDARD белый Е27
STANDARD белый Е27
STANDARD белый Е27
STANDARD белый Е27
STANDARD белый Е27
CANDLE прозрачный Е27
CANDLE прозрачный Е27
CANDLE прозрачный Е27
CANDLE белый Е14
CANDLE белый Е14
CANDLE белый Е14
LUSTRE белый Е27
LUSTRE белый Е27
LUSTRE белый Е27

 

Разрядные лампы(РЛ) в свою очередь подразделяются на два вида: лампы низкого и высокого давления. Принцип действия разрядных ламп основан на свечении плазмы, получаемой при бомбардировании электронами, вылетающими из электродов молекул паров и газов, находящихся внутри лампы. Самыми распространенными являются ртутные лампы, в которых свечение осуществляется в парах ртути. При малых плотностях тока зажигается тлеющий разряд, характеризующийся относительно небольшой яркостью и неоднородностью свечения в междуэлектродном промежутке. Около катода в этом случае существует темный участок, свечение же осуществляется в положительном столбе околоанодного пространства. Протяженность темного участка постоянна, доля светящей части тем больше, чем больше межэлектродный промежуток. Поэтому для увеличения КПД лампы тлеющего разряда люминесцентные лампы изготавливают с большим межэлектродным расстоянием (в основном трубчатой формы).

При малых плотностях тока в парах ртути создается линейчатый спектр с интенсивными линиями 185 и 254 нанометра (нм) в ультрафиолетовой области спектра. В видимой области излучается не более 2% в синем диапазоне спектра. Для преобразования ультрафиолетового излучения в видимое и приближения спектра излучения люминесцентных ламп к солнечному спектру на внутреннюю стеклянную поверхность лампы наносят люминофор. В толще люминофора ультрафиолетовое излучение преобразуется в видимый спектр. В таблице 3 представлен ассортимент и технические характеристики люминесцентных ламп. Световая отдача люминесцентных ламп достигает 75 лм/Вт. Она различная для ламп разной мощности (достигает максимального значения для ламп 40 Вт) и разного спектрального состава. Средний срок службы люминесцентных ламп 10000 часов, но к концу срока службы световой поток снижается на 60 %.

В СНГ лампы выпускаются белого света (ЛБ), холодно-белого света (ЛХБ), дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), тепло-белого света (ЛТБ), а в последнее время ЛХБ улучшенной цветопередачи (ЛЕ или ЛХБЦ).

 

Таблица 3 - Электрические и светотехнические характеристики люминесцентных ламп мощностью 80 Вт

Тип лампы Uн, В Iн, В Ф, лм Ф, лм после 4000 ч. горения
Фн Не менее
ЛДЦ-80-4 0,865
ЛД-80-4 0,865
ЛХБ-80-4 0,865
ЛТБ-80-4 0,865
ЛБ-80-4 0,865

 

Сортамент люминесцентных ламп включает прямые лампы мощностью 4, 6, 8, 15, 20, 30, 40, 65, 80 и 150 Вт, U-образные лампы 8-80 Вт, W-образные лампы 30 Вт, кольцевые 20-40 Вт, лампы типа «Компакт» до 40 Вт. Техническое совершенствование люминесцентных ламп направлено на создание новых люминофоров, повышение световой отдачи и срока службы ламп. За рубежом выпускается широкий набор люминесцентных ламп с высокой светоотдачей и индексом цветопередачи Rа, отличающихся по спектру и цветовой температуре. В таблице 4 приведены основные характеристики некоторых новых линейных люминесцентных ламп фирмы Philips. В таблице 5 приведены некоторые типы новых люминесцентных ламп типа «Компакт» фирмы Philips.

В ртутных лампах высокого давления типа ДРЛ и ДРИ (с исправленной цветностью) используется ртутный разряд без светящих добавок в лампах ДРЛ и с галогенными светящими добавками в лампах ДРИ. Ртутный разряд высокого давления горит внутри кварцевой горелки, которая помещена внутри стеклянной колбы, покрытой в лампах ДРЛ люминофором. Лампы ДРИ не имеют люминофорного покрытия, поскольку галогенные добавки обеспечивают свечение в видимой области спектра без преобразования.

 


Таблица 4 – Люминесцентные лампы фирмы Philips длиной 1200 мм

Тип Мощность, Вт Индекс цветопередачи Rа Световой поток, лм Световая отдача, лм/Вт
MASTER TL5 (Ø 16)
MASTER TL5 (Ø 16)
MASTER TL-D Super (Ø 26)
TL-D (Ø 26)
TL (Ø 38)
TL-M RS (Ø 38)
TL-M RS (Ø 38)
TL-S (Ø 40,5)
TL-D 90 de Luxe (Ø 26)

 

Таблица 5 – Компактные люминесцентные лампы фирмы Philips

Тип Мощность, Вт Напряжение, В Индекс цветопередачи, Rа Световой поток, лм Цоколь
Ambiance PRO 12000 ч 230-240 E27
Ambiance PRO 12000 ч 230-240 E27
Ambiance 6 лет 230-240 Е27
Ambiance 6 лет 230-240 Е27
Ambiance Globe 230-240 E27
Ambiance Globe 230-240 E27
PL E-T PRO 230-240 E27
PL E-T PRO 230-240 E27
PL C PRO 230-240 E27
PL C PRO 230-240 E27
Economy 6 лет 230-240 E27
Economy 6 лет 230-240 E27

 

Металлогалогенные лампы типа ДРИ имеют мощность ламп до 2000 Вт, световую отдачу до 100 лм/Вт, продолжительность горения до 5000 ч. Ртутные лампы высокого давления типа ДРЛ имеют мощность от 250 до 2000 Вт, световую отдачу от 45 до 60 лм/Вт, продолжительность горения 5÷10 тыс. ч.

В таблицах 6 и 7 представлены характеристики ламп ДРЛ и металлогалогенных ламп общего назначения типа ДРИ. В таблице 8 представлены характеристики новых ламп ДРЛ фирмы Philips.

 

Таблица 6 - Ртутные лампы ДРЛ

Тип лампы Мощность, Вт Напряжение, В Номинальный световой поток, лм Размеры, мм
Диаметр Полная длина
ДРЛ 80
ДРЛ 125
ДРЛ 250
ДРЛ 400
ДРЛ 700
ДРЛ 1000
ДРЛ 2000

Таблица 7 - Металлогалогенные лампы общего назначения типа ДРИ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Размеры, мм Тип цоколя
Диаметр Полная длина
С добавлением йодидов натрия и скандия
ДРИ-250-5 Е 40/45
ДРИ-250-6 Е 40/45
ДРИ-400-5 Е 40/45
ДРИ-400-6 Е 40/45
ДРИ-700-5 Е 40/45
ДРИ-700-6 Е 40/65×50БМ
ДРИ-1 000-5 Е 40/45
ДРИ-1000-6 Е 40/65×50БМ
ДРИ-2000-6 Е 40/65×50БМ
ДРИ-3500-6 Специальный
С добавлением йодидов натрия, таллия, индия
ДРИ-250 Е 40/45
ДРИ-400 Е 40/45
ДРИ-700 Е 40/55×47

Таблица 8 – Ртутные лампы фирмы Philips

Тип Мощность, Вт Индекс цветопередачи Rа Цветовая температура, К Световой поток, лм Цоколь
Ртутные
HPL-N E27
HPL-N Е27
HPL-N Е27
HPL-N Е40
HPL-N Е40
HPL-N Е40
HPL-N E40
HPL COMFORT PRO E27
HPL COMFORT PRO E27
HPL COMFORT PRO E27
HPL COMFORT PRO E40
HPL COMFORT PRO E40
HPL-R E27
HPL-R E40
HPL-R E40

 

2.4 Выбор источников света

 

При выборе источников света (ИС) рекомендуется руководствоваться следующими указаниями:

а) для общего внутреннего и наружного освещения использовать преимущественно разрядные лампы;

б) применять лампы большей единичной мощности, при которой возможно выполнение нормативных требований к качеству освещения;

в) при технической необходимости или по архитектурно-художественным соображениям допускается применять в пределах одного помещения разрядные лампы и лампы накаливания;

г) не допускается, как правило, питать разрядные лампы постоянным током, а также применять их в случаях, когда возможно снижение напряжения до уровня ниже 90 % номинального.

Для рационального выбора источника света по цветовым характеристикам зрительные работы классифицируются по двум признакам: уровню требований к цветопередаче и цветоразличению и точности зрительной задачи, опосредованной через нормированную освещенность. В пределах этих классов зрительной работы сочетания определенных значений трех характеристик Е, Tц и Rа позволяют обеспечить хорошие условия зрительной работы. В последние годы на основании данных физико-гигиенических исследований выявлен ряд ограничений на применение некоторых источников света. Так, например, ксеноновые лампы со значительной долей УФ излучения и большой пульсацией светового потока не рекомендованы для освещения работ с высокими требованиями к цветоразличению, хотя имеют наилучшие показатели по сочетанию Tц и Rа. НЛВД не рекомендованы для общего освещения точных зрительных работ, поскольку имеются данные о развитии повышенного зрительного утомления при освещении ими (по сравнению с ЛЛ типа ЛБ). Обобщенные рекомендации по выбору ИС для внутреннего освещения сводятся к следующему. Для общего освещения рекомендуется применять только РЛ, ЛЛ в основном в низких помещениях (до 6 м); РЛВД (типов ДРЛ, ДРИ, ДНаТ) - в основном в средних и высоких; ЛН могут применяться ограниченно в помещениях с тяжелыми условиями среды при отсутствии для данных условий РЛ, в вспомогательных помещениях и для временного пребывания людей, для освещения технологических площадок, мостиков, переходов, площадок обслуживания крупного оборудования, для аварийного и эвакуационного освещения.

Лампы накаливания применяются:

- для освещения помещений с тяжелыми условиями среды и при наличии взрывоопасных зон, если отсутствуют светильники с РЛ;

- в помещениях, где выполняются зрительные работы VI и VIII разрядов при временном пребывании людей, а также при постоянном пребывании людей - в случае технико-экономической целесообразности;

- для общего и местного освещения в помещениях с повышенной опасностью поражения электрическим током, когда не допускается применение напряжения 127 В и выше;

- для местного освещения при необходимости концентрации светового потока или его направленности, а также при конструктивной невозможности установки светильников с ЛЛ;

- в помещениях (независимо от точности выполняемых работ), где недопустимы радиопомехи;

- для аварийного освещения, когда рабочее выполнено РЛ.

 

2.5 Выбор коэффициента запаса k

 

При эксплуатации осветительной установки освещенности на рабочих поверхностях уменьшаются вследствие того, что с течением времени световой поток ламп снижается. Это вызвано загрязнением ламп, осветительной арматуры и отражающих поверхностей - стен и потолков. Для того чтобы поддерживать освещенность на рабочих поверхностях на уровне нормируемой, в течение всего времени эксплуатации ее расчетное значение принимают больше нормируемой. Значения коэффициента запаса, учитывающие снижение освещенности в процессе эксплуатации, приводятся в таблице 9 или СНиП [1].

 

2.6 Выбор светильников по светотехническим характеристикам и конструктивному исполнению

 

Основное назначение светильников заключается в перераспределении светового потока источников света в требуемых для осветительных установок направлениях, ограничении слепящего действия ламп и защите ламп, оптических элементов и электрических аппаратов от воздействия окружающей среды. Светораспределение светильников характеризуется классами и типами кривых сил света, обусловленными ГОСТ 13828-74.

Для производственных помещений при необходимости создания освещенности в горизонтальной плоскости наиболее целесообразны светильники прямого света (класса П), а в помещениях со светлыми потолками и стенами - светильники преимущественно прямого света (класса Н). Чем выше помещение и больше величина нормируемой освещенности, тем более концентрированными кривыми сил света должны обладать светильники. Для очень высоких помещений наиболее выгодны светильники с концентрированной кривой типа К, и по мере уменьшения высоты - с кривыми Г и Д.

 


Таблица 9 – Коэффициенты запаса

Помещения Виды помещений Коэффициент запаса k
при газоразрядных лампах при лампах накаливания
1 Производственные помещения с воздушной средой, содержащей в рабочей зоне: - свыше 5 мг/м3 пыли, дыма, копоти;   Агломерационные фабрики, цементные заводы и обрубные отделения литейных цехов     1,7  
- от 1 до свыше 5 мг/м3 пыли, дыма, копоти; Цехи кузнечные, литейные, мартеновские, сборного железобетона 1,8 1,6
- менее 1 мг/м3 пыли, дыма, копоти; Цехи инструментальные, сборочные, механические, механосборочные, пошивочные 1,5 1,4
- значительные концентрации паров, кислот, щелочей, газов, способных при прикосновении с влагой образовывать слабые растворы кислот, щелочей, а также обладающих большой коррозионной способностью. Цехи химических заводов по выработке кислот, щелочей, едких химических реактивов, ядохимикатов, удобрений, цехи гальванических покрытий и различных отраслей промышленности с применением электролиза 1,8 1,6
2 Производственные помещения с особым режимом по чистоте воздуха при обслуживании светильников: - с технического этажа;       1,3     -
- снизу из помещения.   1,4 -
3 Помещения общественных и жилых зданий: - пыльные, жаркие и сырые;     Горячие цехи предприятий общественного питания, охлаждаемые камеры, помещения для приготовления растворов в прачечных, душевые и т.д.     1,7     1,6
- с нормальными условиями среды Кабинеты и рабочие помещения, жилые комнаты, учебные помещения, лаборатории, читальные залы, залы совещаний, торговые залы и т.д. 1,4 1,4

 


Светильники преимущественно отраженного и отраженного света в производственных помещениях, как правило, не применяются. Они используются в основном в установках архитектурного освещения общественных зданий. Для внутреннего освещения практически не применяются светильники с широким типом кривой силы света (Ш), которые целесообразны для наружного освещения.

Распределение на классы производится в зависимости от отношения светового потока, излучаемого светильником в нижнюю полусферу, к общему потоку светильника и приведено в таблице 10.

 

Таблица 10 - Классы светильников

Обозначение класса светильников Наименование класса светильников Доля светового потока, направленного в нижнюю полусферу, от всего потока светильника
П Светильники прямого света > 80
Н Светильники преимущественно прямого света 60 < ≤ 80
Р Светильники рассеянного света 40 < ≤ 60
В Светильники преимущественно отраженного света 20 < ≤ 40
О Светильники отраженного света ≤ 20

 

Распределение светильников по типам кривых сил света производится в зависимости от формы этих кривых в любых меридиональных (т.е. вертикальных) плоскостях и приведено в таблице 11.

Светильники, как и все остальное электрооборудование, имеют различную степень защиты от попадания посторонних частиц (пыли) и воды (влаги), оказывающих большое влияние на надежность светильников и их безопасность. Для взрывоопасных зон при выборе типа светильников необходимо учитывать класс взрывоопасной зоны, а также категорию и группу взрывоопасной смеси. При выборе типа светильников по конструктивному исполнению необходимо учитывать также и другие факторы окружающей среды: химическую активность, токопроводность пыли, температуру воздуха в зоне установки светильников и др.

 


Таблица 11 - Типы КСС светильников

Обозначение типа КСС Наименование типа КСС Зона возможных направлений Imax, А Значение коэффициента формы КСС Приближенное математическое выражение КСС
К Концентрированная 0÷15 Кф ≥ 3
Г Глубокая 0÷30, 180÷150 2 ≤ Кф < 3
Д Косинусная 0÷35, 180÷145 1,3 ≤ Кф < 2
Л Полуширокая 35÷55, 145÷125 1,3 ≤ Кф
Ш Широкая 55÷85, 125÷95 1,3 ≤ Кф
М Равномерная 0÷90, 180÷90 Кф ≤ 1,3 при этом Imin>0,7Imax
С Синусная 70÷90, 110÷90 Кф < 1,2 при этом I0>0,7Imax

 

2.7 Методика светотехнического расчета осветительных установок

 

Светотехнический расчет освещения производственных помещений является комплексной задачей, в процессе решения которой определяются высота установки, размещение, число светильников, а также мощность ламп, необходимых для создания требуемых осветительных установок. Выбор числа, мощности и расположения светильников следует производить на основании типовых решений для освещаемых помещений и лишь, при отсутствии таковых, на основе светотехнического расчета.

 

2.7.1 Размещение светильников

 

При системе общего освещения светильники можно размещать над освещаемой поверхностью либо равномерно, либо локализовано. При равномерном освещении светильники располагают правильными симметричными рядами, создавая при этом относительно равномерную освещенность по всей площади. При локализованном освещении светильники располагаются индивидуально для каждого рабочего места или участка производственного помещения, создавая при этом требуемые освещенности только на рабочих местах.

Минимальная высота подвеса светильника над освещаемой поверхностью определяется условиями ограничения ослепленности. При общем равномерном освещении выгоднейшими вариантами расположения светильников с лампами накаливания и лампами ДРЛ является расположение их по углам прямоугольника или шахматное расположение, а при расположении светильников по углам квадрата или по углам равностороннего треугольника получается наиболее равномерное распределение освещенности по всей площади помещения. Выбор расстояния между светильниками зависит от типа светильника, высоты его подвеса над рабочей поверхностью, а иногда способ расположения светильников зависит от архитектурных или строительных условий.

Следует учесть, что увеличение расстояния между светильниками и увеличение мощности каждого светильника приводит к увеличению неравномерного распределения освещенности на освещаемой поверхности, так как при этом освещенность под светильником будет намного больше освещенности точек между светильниками. Это приводит к неприятным условиям адаптации глаз человека и, кроме того, к увеличению установленной мощности осветительной установки. При частом расположении светильников неравномерность распределения освещенности снижается, однако в этом случае нужно применять лампы малой мощности с невысокой светоотдачей, а это приводит к повышенному расходу электроэнергии и росту первоначальных затрат (увеличение количества светильников и монтаж электросети). Отсюда следует, что при выборе расстояния между светильниками необходимо найти такое, которое обеспечило бы наименьшую установленную мощность осветительной установки и достаточную для практических условий равномерность освещения.

На рисунке 2 представлены типичные случаи расположения светильников, где приняты следующие обозначения: H - высота помещения, а при ферменном покрытии - высота до затяжки ферм; hс - расстояние светильников от перекрытия или затяжки ферм; hр - высота рабочей поверхности над полом (рабочей поверхностью называется поверхность, на которой производится работа и на которой нормируется или измеряется освещенность); hп - высота установки светильников над полом; h = hп - hр = H - hc - hp - расчетная высота; L - расстояние между светильниками или их рядами; LA, LB - расстояния между светильниками в направлении вдоль и поперек помещения, если они неодинаковы; l - расстояние крайних рядов светильников от стены; все размеры указываются в метрах.

Из названных размеров Н и hр являются заданными; hс, кроме случаев установки светильников на стенах, принимается в пределах от 0 при установке на потолке или заподлицо с фермами и обычно до 1,5 м. Большие значения hc, как правило, не рекомендуются, и если они принимаются, то должны быть предусмотрены меры против раскачивания светильников потоками воздуха (необходим жесткий подвес). Расстояние l рекомендуется принимать около , при наличии у стен проходов и около в остальных случаях. При безусловной необходимости обеспечить у стен такую же освещенность, как по всей площади, расстояние l может быть уменьшено почти до нуля путем установки светильников на кронштейнах, укрепленных на стенах.

На рисунке 2,б показан «классический» случай равномерного размещения светильников с лампами накаливания или лампами ДРЛ по вершинам квадратных полей. По условиям размещения светильников в конкретных помещениях часто приходится принимать поля прямоугольной формы, причем в этом случае желательно, чтобы отношение LA:LB не превышало 1,5. В помещениях с ферменным перекрытием (рисунок 2,в) в большинстве случаев светильники могут устанавливаться только на фермах. В этом случае допустимы и увеличенные значения LA:LВ, так как по сетевым и эксплуатационным соображениям следует по возможности сокращать число продольных рядов светильников. Особенно это важно при наличии специальных мостиков для обслуживания светильников, вдоль которых светильники размещаются, как правило, учащенно (рисунок 2,г).

На рисунке 2,д показано так называемое «шахматное» расположение светильников, в данном случае по вершинам квадратных, но диагонально расположенных полей. Теоретически оптимальным является шахматное расположение по вершинам ромбов с острым углом 60°. В узких помещениях иногда неизбежно однорядное расположение светильников, но в помещениях, где производятся работы, его следует избегать, так как при нем (и при светильниках прямого света) создаются глубокие тени и не всегда обеспечивается удачное направление света.

Светильники с трубчатыми люминесцентными лампами преимущественно размещаются рядами, желательно параллельными стене с окнами (рисунок 2,е) или длинной стороне узкого помещения (рисунок 2,ж). Расположение светильников по схеме, приведенной на рисунке 2,е, иногда оспаривается архитекторами по эстетическим соображениям, как психологически подчеркивающее удлиненность помещения. Но в помещениях, предназначенных для работы, следует, как правило, настаивать на таком расположении: направление света в этом случае приближается к направлению естественного света, облегчается возможность включения в сумерки только освещения в глубине помещения, при обычной ориентации рабочих мест так, что естественный свет падает на них слева, уменьшается прямая и отраженная блескость и, наконец, оказывается меньшей протяженность групповой сети. В схемах на рисунке 2, е и ж ряды предпочтительно выполнять непрерывными, т. е. составлять из стыкованных между собою светильников. Ряды с разрывами допускаются, если это необходимо согласно расчету, но их недостатком является худший внешний вид и возможность возникновения веерных теней.

Расстояние от крайнего ряда светильников до стен не должно превышать 0,3 (как исключение - до 0,5) расстояния между рядами светильников (L).

Светильники можно располагать и рядами с разрывами, но при этом расстояние между их торцами не должно превышать 0,5 высоты подвеса светильников над освещаемой поверхностью. Если длина каждого ряда превышает двойную высоту подвеса светильников над освещаемой поверхностью, рекомендуется у краев ряда размещать замыкающие дополнительные светильники на расстоянии от стены не менее 0,3 высоты подвеса. Если светильники располагаются рядами с разрывами, то взамен установки дополнительных светильников нужно светильники сближать у концов каждого ряда.

Установлено, что расстояние между светильниками зависит от наивыгоднейшей величины отношения λ = L/h, где L - расстояние между светильниками или рядами, м; h - высота подвеса светильника над рабочей поверхностью, м.

  а)   б)
  в)   г)   д)
е)       ж)
       

Рисунок 2 – Схемы размещения светильников: а – в разрезе; б–ж – в плане (1 – угловое поле; 2 – одно из центральных полей; 3 – оси ферм; 4 – оси мостиков обслуживания; 5 – стена с окнами)

Часто по архитектурным соображениям или конструктивно-строительным и другим условиям не могут быть приняты наивыгоднейшие отношения L/h, в таких случаях допускается отступление от них в сторону уменьшения. Увеличение же рекомендованных отношений L/h нежелательно. Рекомендации по выбору λ приведены в таблице 12.

 

Таблица 12 – Рекомендуемые и наибольшие значения λ осветительных приборов с типовыми кривыми, обеспечивающие равномерность освещения

Типовая кривая Значения λ
Рекомендуемое Наибольшее допустимое
Концентрированная (К) 0,4 - 0,7 0,9
Глубокая (Г) 0,8 - 1,2 1,4
Косинусная (Д) 1,2 - 1,6 2,1
Равномерная (М) 1,8 – 2,6 3,4
Полуширокая (Л) 1,4 – 2,0 2,3

 

Расстояние от потолка до светильника hс обычно принимается 0,5-0,7 м (в жилых и общественных зданиях пониженной высоты 0,3-0,4 м). При освещении помещения светильниками рассеянного и преимущественно отраженного света потолок должен быть равномерно освещен. При малых значениях hс потолок освещается неравномерно пятнами. Равномерность распределения яркости по потолку обеспечивается при отношении hс/hр=0,2÷0,25.

Высота установки светильников общего освещения обусловливается многими факторами: высотой самих помещений и наличием в их верхней зоне каких-либо частей производственного оборудования, транспортных средств и инженерных коммуникаций (подвесных транспортеров и конвейеров, мостовых кранов, кран-балок, монорельсовых путей для тельферов, вентиляционных коробов, трубопроводов различного назначения и т.п.), характером, размещением и высотой производственного оборудования, а также расположением рабочих зон и других мест, требующих освещения. В цехах, где требуется общее локализованное освещение, например при работе на конвейерах, светильники целесообразно приближать к рабочей зоне и устанавливать на относительно небольшой высоте (2,5-4 м).

2.7.2 Расчет освещения методом коэффициента использования светового потока

 

Для помещений, в которых предусматривается общее равномерное освещение горизонтальных поверхностей, освещение рассчитывают методом коэффициента использования светового потока.

По этому методу расчетную освещенность на горизонтальной поверхности определяют с учетом светового потока, падающего от светильников непосредственно на поверхность и отраженного от стен, потолка и самой поверхности. Так как этот метод учитывает долю освещенности, создаваемую отраженным световым потоком, его применяют для расчета помещений, где отраженный световой поток играет существенную роль, т.е. для помещений со светлыми потолками и стенами при светильниках рассеянного, отраженного и преимущественно отраженного света.

Отношение светового потока, попадающего на расчетную поверхность, ко всему потоку, излучаемому светильниками, установленными в помещении, называется коэффициентом использования светового потока осветительной установки

,

где Фп – световой поток, падающий от светильников на непосредственно освещаемую поверхность, лм;

Фотр – отраженный световой поток, падающий на ту же освещаемую поверхность, лм;

Фл – световой поток каждой лампы, лм;

n – число ламп в освещаемом помещении.

Величина коэффициента использования всегда меньше единицы, т.к. величина л всегда больше величины Фр ввиду того, что некоторая часть светового потока поглощается осветительной арматурой, стенами и потолком.

На величины коэффициента использования влияют следующие факторы:

- тип и к.п.д. светильника. Чем больше выбранный светильник направляет световой поток непосредственно на освещаемую поверхность Фп, тем больше коэффициент использования, тем меньше потери в нем, следовательно, больше коэффициент использования;

- геометрические размеры помещения. Чем больше освещаемая поверхность по сравнению с отражающими, тем выше коэффициент использования, т.к. при этом возрастает Фп;

- высота подвеса светильника над освещаемой поверхностью. Чем выше подвешены светильники над освещаемой поверхностью, тем больше светового потока поглощается стенами и потолком, следовательно, коэффициент использования уменьшается;

- окраска стен и потолка. Чем светлее окраска стен и потолка, тем выше коэффициент отражения, и Фотр возрастает, а следовательно, возрастает и коэффициент использования.

Зависимость h от площади помещения, высоты и формы возможно учесть одной комплексной характеристикой - индексом помещения. Индекс помещения рассчитывается из выражения

,

где А, В, S - соответственно длина, ширина и площадь помещения.

Если предварительно выбран тип светильников, определено их расположение и число, то по расчетному потоку ИС определяют ближайшее стандартное значение мощности лампы.

При расчетах освещения по любому методу отклонения светового потока выбираемой стандартной лампы при нормативной освещенности допускается в пределах от + 20% до - 10% от значения, полученного по расчету.

Расчетный поток ИС определяется по формуле

,

где N - число ИС;

k - коэффициент запаса;

z - коэффициент минимальной освещенности (отношение средней освещенности и минимальной).

В расчетах коэффициент z принимается равным: 1,15 - для светильников, располагаемых по вершинам прямоугольных полей; 1,1 - для светильников с ЛЛ, располагаемых рядами. Обычно таким способом ведется расчет, если в качестве ИС используются ЛН или РЛ высокого давления.

Если выбран тип светильников и задана мощность ламп, то число светильников может быть определено из выражения

.

После нахождения числа светильников и мощности ламп, удовлетворяющих нормированной освещенности, производят проверку варианта осветительной установки по качественным показателям освещения: не будет ли установка оказывать недопустимое слепящее действие на людей, работающих или находящихся в помещении, и какова глубина пульсации освещенности при использовании в качестве источника света газоразрядных ламп.

 

2.7.3 Расчет освещения методом удельной мощности

 

Частным случаем метода коэффициента использования светового потока является расчет по методу удельной мощности (w).

Метод расчета по удельной мощности используется в следующих случаях: для предварительного определения установленной мощности осветительной установки; для приблизительной оценки правильности проведения светотехнического расчета; при проектировании освещения небольших и средних помещений, не требующих точных работ.

Исходными данными для проектирования является тип выбранного светильника, минимальная освещенность, высота и площадь помещения. В справочниках для различных нормируемых освещенностей, площади помещения и высоты h приведены значения w. Предварительно намечают число светильников, по таблицам справочника определяют w, а затем определяют мощность лампы по формуле

.

Полученное значение мощности лампы округляют до ближайшего стандартного. Для ламп типа ДРЛ можно пренебречь зависимостью световой отдачи от номинальной мощности лампы. В таком случае между освещенностью и удельной мощностью существует прямая пропорциональная зависимость, и в целях сокращения объема таблиц уместно составлять их для освещенности 100 лк с пропорциональным пересчетом в других случаях.

 

а) б)

Рисунок 3 – Варианты освещения помещения светильниками с лампами накаливания (а) и светильниками с люминесцентными лампами(б)

 

Пример 1 – Дано помещение размерами: А=24 м, В=12 м, Н=4,5 м, hр=0,8 м; коэффициенты отражения: ρп = 50%, ρс = 30%, ρр = 10%. Требуется осветить это помещение лампами накаливания, создав освещенность Е = 50 лк при k = 1,3. Необходимо определить: тип светильников, их число и мощность ламп.

Выбираем светильники типа «Астра», которые имеют кривую светораспределения типа Д, для которого можно принять λc = 1,4. Приняв hc = 0,5 м, получим h = 3,2 м и L = 3,2·1,4 = 4,5 м. Учитывая, что λэ несколько больше, чем λс, размещаем светильники, как показано на рисунке 3, а, получив N = 15.

Находим

и по справочнику для светильников «Астра» определяем η = 0,59.

Принимаем z = 1,15, вычисляем необходимый поток лампы

лм.

Ближайшая стандартная лампа 200 Вт имеет Ф = 2800 лм, что превышает расчетное значение на 15%. Если бы в том же примере нам требовалось получить ос

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.