Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Электрический ток. Единицы и величины



Электри́ческий ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Различают переменный (англ. alternating current, AC) и постоянный (англ. direct current, DC) токи.

  • Постоянный ток — ток, направление и величина которого слабо меняется во времени.
  • Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
    Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональна сопротивлению проводника этого участка цепи :

Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.

Согласно закону Ома плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды :

Плотность тока в системе СИ измеряется в амперах на квадратный метр.

Мощность

Основная статья: Закон Джоуля — Ленца

При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах

В сплошной среде объёмная мощность потерь определяется скалярным произведением вектора плотности тока и вектора напряжённости электрического поля в данной точке:

Объёмная мощность измеряется в ваттах на кубический метр.

-Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2×10-7 Н.

-Вольт, единица разности потенциалов и электродвижущей силы. Вольт – электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

-Кулон, единица количества электричества (электрического заряда). Кулон – количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

-Фарада, единица электрической емкости. Фарада – емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

-Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

-Вебер, единица магнитного потока. Вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

-Тесла, единица магнитной индукции. Тесла – магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м2, перпендикулярную линиям индукции, равен 1 Вб.

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СОБСТВЕННЫЕ НАИМЕНОВАНИЯ
  Единица Выражение производной единицы
Величина Наименование Обозначение через другие единицы СИ через основные и дополнительные единицы СИ
Частота герц Гц с–1
Сила ньютон Н м×кг×с–2
Давление паскаль Па Н/м2 м–1×кг×с–2
Энергия, работа, количество теплоты джоуль Дж Н×м м2×кг×с–2
Мощность, поток энергии ватт Вт Дж/с м2×кг×с–3
Количество электричества, электрический заряд кулон Кл А×с с×А
Электрическое напряжение, электрический потенциал вольт В Вт/А м2×кг×с–3×А–1
Электрическая емкость фарада Ф Кл/В м–2×кг–1×с4×А2
Электрическое сопротивление ом Ом В/А м2×кг×с–3×А–2
Электрическая проводимость сименс См А/В м–2×кг–1×с3×А2
Поток магнитной индукции вебер Вб В×с м2×кг×с–2×А–1
Магнитная индукция тесла Т, Тл Вб/м2 кг×с–2×А–1
Индуктивность генри Г, Гн Вб/А м2×кг×с–2×А–2
Световой поток люмен лм   кд×ср
Освещенность люкс лк   м2×кд×ср
Активность радиоактивного источника беккерель Бк с–1 с–1
Поглощенная доза излучения грэй Гр Дж/кг м2×с–2

 

 

11. Светотехнические и эксплуатационные параметры источников света
Источники света.

1 теп­ловые источники света, 2 газоразрядные. 3-полупроводниковые (светодиоды).

Все параметры источников света можно разбить на две группы: технические и эксплуатационные. Технические параметры характеризуют источник света безот­носительно к условиям его применения

Основные электрические параметры источников свет.

Номинальное напряжение (Uн) — напряжение, на кото­рое рассчитана конкретная лампа или на которое она может вклю­чаться с предназначенной для этого специальной аппаратурой. Для ламп накаливания все остальные параметры снимаются именно при номинальном напряжении.

Номинальная мощность лампы (Рн) — расчетная мощ­ность, потребляемая лампой накаливания при ее включении на но­минальное напряжение. Для газоразрядных ламп номинальная мощность — это расчетная мощность, которую потребляет лампа при ее включении со специально предназначенной для этого аппаратурой.

Световые параметры источников света.

световой поток Ф, то есть поток, который создает лампа при ее номинальной мощности.

Важнейшим световым показателем ламп, харак­теризующим их экономичность, является световая отдача — отношение светового потока лампы к по­требляемой ею мощности. Световая отдача измеря­ется в люменах на ватт (лм/Вт,). По существу, световая отдача — это коэффициент полезного дей­ствия лампы, выраженный в световых величинах.

цветовая температурацв). Это условная величина, приблизительно характеризующая цвет излучения лампы и определяемая путем сравнения этого цвета с цветом теплового излучения так называемого «абсолютно черного тела».

К механическим параметрам ламп относятся: их габариты и установочные размеры; масса (если она приводится в каталога: тип цоколя; для некоторых типов ламп — положение тела накала или разрядного промежутка относительно цоколя.

Важнейшим из эксплуатационных параметров ламп является срок службы.

Кроме срока службы к эксплуатационным параметрам относят­ся: устойчивость к внешним климатическим факторам (темпера­тура, давление и влажность окружающего воздуха); устойчивость к механическим воздействиям (удары, вибрации, линейные ускоре­ния, звук); устойчивость к колебаниям напряжения питающей электросети.

 

Лампы накаливания

Ла́мпа нака́ливания — электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

В лампе используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка. Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с−1·м−2·Гц−1·ср−1).

Эквивалентно,

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с−1·м−2·м−1·ср−1).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π: ε(ν, T) = πI(ν, T), ε(λ, T) = πu(λ, T)[1].

Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 K (температура поверхности Солнца) свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Температура в 5771 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

Для оценки данного качества света используется т. н. цветовая температура. При достижимых практически температурах 2300—2900 K излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «жёлто-красным», чем дневной свет. Однако лампа — точечный источник, поэтому человеку свойственнее сопоставлять её свет со светом, к примеру, костра или свечи, чем с масштабным солнечным. Поэтому свет такой температуры не вызывает раздражения при длительном использовании.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы, выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения, конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение — 12, 24 или 36 (42) В. Область применения — ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы, выпускаемые в окрашенных колбах. Назначение — иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10—25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком ), их недостаток — быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации — пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН — локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы — чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6—220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов, к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы — разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первая цифра означает рабочее напряжение в вольтах, вторая — силу тока в миллиамперах;
  • Фотолампа, перекальная лампа — разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400К, по сравнению с 2700К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
    • Пилотное освещение — напряжение снижено на 20-30 % с помощью ЛАТРа. При этом лампа работает с недокалом и имеет низкую цветовую температуру.
    • Номинальное напряжение.[2]
  • Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.
  • Малоинерционная лампа накаливания, лампа накаливания с тонкой нитью — использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа. Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала.[3] С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы — основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов. Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесенным тонером. За счет тепла, передающегося от вала, тонер расплавляется и впрессовывается

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.