Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

II.2. Частная физиология сенсорных систем



Зрительная сенсорная система

Зрительная сенсорная система (зрительный анализатор) представляет собой совокупность защитных оптических, рецепторных и нервных структур, воспринимающих и анализирующих световые раздражители. Состоит из периферического отдела – глаза, промежуточных звеньев – подкорковых зрительных центров (наружное коленчатое тело таламуса и переднее двухолмие) и конечного звена – зрительной коры. Все уровни зрительной системы соединены друг с другом проводящими путями.

Строение глаза

Орган зрения человека - глаз (рис. 1) имеет шарообразную (или близкую к таковой) форму. Он включает в себя ядро, покрытое тремя оболочками.

Горизонтальный разрез правого глаза

1 – склера; 2 – роговая оболочка (роговица); 3 – сосудистая оболочка; 4 – ресничное тело; 5 – радужная оболочка; 6 – зрачок; 7 – пигментный эпителий; 8 – сетчатка; 9 – зрительный нерв; 10 – передняя камера глаза; 11 – хрусталик; 12 – стекловидное тело.

Наружная плотная непрозрачная оболочка – склера – выполняет главным образом защитную, механическую функцию. В передней части глазного яблока склера переходит в прозрачную роговую оболочку, или роговицу. Кривизна поверхности роговицы определяет особенности преломления света. Роговица обладает наибольшей преломляющей способностью. Под склерой лежит сосудистая оболочка, которая образована сетью кровеносных сосудов. Ее основное назначение – питание глазного яблока. Спереди сосудистая оболочка утолщается и переходит сначала в ресничное тело (мышца, изменяющая кривизну хрусталика)и далее – в радужную оболочку, которые состоят из гладких мышечных волокон, кровеносных сосудов и пигментных клеток. Цвет радужной оболочки зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью – «водянистой влагой». В центре радужной оболочки имеется отверстие – зрачок, играющий роль диафрагмы и регулирующий величину светового потока, проникающего внутрь глаза. Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца, суживающая зрачок – сфинктер – иннервируется парасимпатическими волокнами, мышца, расширяющая зрачок – дилататор – иннервируется симпатическими волокнами. Реакция расширения зрачка до максимального диаметра – 7,5 мм – очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм достигается быстрее – всего за 5 секунд.

Позади радужной оболочки расположен хрусталик. Он представляет собой двояковыпуклую линзу, расположенную в сумке, волокна которой соединены с ресничными мышцами. С помощью этих мышц хрусталик способен изменять свою кривизну. Такая способность хрусталика называется аккомодацией. Аккомодация обеспечивает ясное видение различно удаленных предметов. При рассматривании близко расположенных предметов кривизна хрусталика увеличивается, если же предмет находится далеко, кривизна уменьшается. Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка расположена слишком близко к хрусталику и фокусировка хороша только при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).

Внутри глаза, позади хрусталика, находится стекловидное тело. Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости. Поскольку и хрусталик, и стекловидное тело являются белковыми структурами, то обменные процессы в них могут нарушаться. Например, с возрастом снижается эластичность хрусталика, поэтому ухудшается способность видения близко расположенных предметов (старческая дальнозоркость), постепенно он теряет свою прозрачность, возникает заболевание, получившее название катаракты. В стекловидном теле могут появляться плотные вкрапления, что субъективно ощущается как темные точки, пылинки в поле зрения. Эти изменения в конечном итоге снижают четкость изображения и могут привести к потере зрения. Стекловидное тело и хрусталик называют оптической системой глаза, которая обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Изображение на сетчатке оказывается четким, но уменьшенным и перевернутым. Мозг исправляет эту «ошибку», руководствуясь не только поступающей зрительной информацией, но и информацией от других сенсорных систем (вестибулярной, проприоцептивной, кожной).

Строение сетчатки

Сетчатка – с нейроанатомической точки зрения – высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Она состоит из нескольких слоев клеток, выполняющих разные функции. Несколько упрощенно строение светочувствительного и проводящего аппарата сетчатки можно представить в виде следующей схемы (рис. 2).

    Рис. 2. Строение сетчатки. 1 – палочка; 2 – колбочка; 3 – карликовый биполяр; 4 – палочковый биполяр; 5 – плоский биполяр; 6 – горизонтальная клетка; 7 – амакриновая клетка; 8 – ганглиозная клетка; 9 – пигментный эпителий; 10 – мюллерова клетка (глия).    

 

Наружный слой сетчатки, плотно примыкающий непосредственно к сосудистой оболочке, образован пигментными клетками, содержащими пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. К пигментному слою изнутри примыкает слой фоторецепторов – колбочек и палочек, которые повернуты от пучка падающего света таким образом, что их светочувствительные сегменты спрятаны в промежутках между клетками пигментного слоя. Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Палочки и колбочки отличаются функционально: палочки реагируют на свет и обеспечивают зрительное восприятие при слабой освещенности, а колбочки функционируют при ярком свете и обеспечивают восприятие цвета. Фоторецепторы содержат зрительные пигменты, которые по своей природе являются белками. В палочках содержится пигмент родопсин, в колбочках – пигменты иодопсин, хлоролаб и эритлаб, необходимые для цветового зрения. Свет, попадая на сетчатку, вызывает разложение пигмента. Эти химические преобразования сопровождаются изменением потенциала на мембране рецептора, т.е. возникновением рецепторного потенциала. Таким образом, функция рецепторов сводится к преобразованию энергии квантов света в электрическую энергию ответа клетки.

На сетчатке каждого глаза около 6 млн. колбочек и 120 млн. палочек – всего около 130 млн. фоторецепторов. Они распределены по сетчатке неравномерно: чем ближе к периферии, тем больше палочек, чем ближе к центру, тем больше колбочек, наконец, в самом центре сетчатки напротив зрачка располагаются только колбочки. Эта область называется желтым пятном или центральной ямкой. Здесь плотность колбочек составляет 150 тысяч на 1 квадратный миллиметр, поэтому в области желтого пятна острота зрения максимальна.

Центральная часть сетчатки представлена биполярными клетками, имеющими по два относительно длинных отростка, одним из которых они контактируют с фоторецепторами, другим – с ганглиозными клетками сетчатки, которые, в свою очередь, составляют ее внутреннюю часть. Ганглиозные клетки обладают круглыми рецептивными полями с четко выраженными центром и периферией. Размеры центральной части и периферической каймы могут изменяться в зависимости от освещенности. Если центр возбуждается при попадании света на сетчатку, то периферия при этом тормозится. Может быть и обратное соотношение. Ганглиозные клетки имеют как палочковые, так и колбочковые рецептивные поля. В последнем случае центр и периферия рецептивного поля возбуждается (или тормозится) определенным цветом. Например, если в ответ на предъявление красного цвета центр возбуждается, то периферия будет тормозиться. Такие комбинации могут быть самыми разнообразными. Ганглиозные клетки в отличие от других элементов сетчатки способны генерировать потенциалы действия, направляющиеся по нервным волокнам к центральным структурам мозга.

Ганглиозные клетки являются выходными элементами сетчатки. Их аксоны формируют зрительный нерв, который пронизывает сетчатку в противоположном направлении и входит в полость черепа. В месте вхождения в сетчатку волокон зрительного нерва фоторецепторы отсутствуют; эта область получила название слепого пятна.

Таким образом, фоторецепторы, биполяры и ганглиозные клетки представляют собой три последовательных звена переработки зрительной информации.

На уровне между рецепторами и биполярами имеются специализированные клетки с горизонтальным расположением отростков, которые регулируют передачу возбуждения от рецепторов к биполярам и носят название горизонтальных. Между биполярами и ганглиозными клетками, располагаясь как бы симметрично горизонтальным, амакриновые клетки, которые "управляют" передачей электрических сигналов от биполяров к ганглиозным клеткам. На теле амакриновых клеток заканчиваются центробежные волокна, несущие возбуждение из центральной нервной системы. Горизонтальные и амакриновые клетки обеспечивают латеральное торможение между соседними клеточными элементами сетчатки, ограничивая распространение зрительного возбуждения внутри нее.

В заключение следует отметить, что сетчатка как система позволяет выделять такие характеристики светового сигнала, как его интенсивность (яркость), пространственные параметры (размер, конфигурация). Рецептивные поля, построенные по принципу антагонистических отношений центра и периферии, позволяют оценивать контрастность и контуры изображения, а также оптимальным образом выделять полезный сигнал из шума.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.